已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意,不等式恒成立,求實(shí)數(shù)t的取值范圍.
(1)函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是
(2)

試題分析:(1),根據(jù)題意,由于函數(shù)
當(dāng)t=-e時(shí),即導(dǎo)數(shù)為,,函數(shù)的單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是
(2) 根據(jù)題意由于對(duì)于任意,不等式恒成立,則在第一問(wèn)的基礎(chǔ)上,由于函數(shù),只要求解函數(shù)的最小值大于零即可,由于當(dāng)t>0,函數(shù)子啊R遞增,沒(méi)有最小值,當(dāng)t<0,那么可知,那么在給定的區(qū)間上可知當(dāng)x=ln(-t)時(shí)取得最小值為2,那么可知t的取值范圍是
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)的運(yùn)用,以及函數(shù)最值的運(yùn)用,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),.
(Ⅰ)求的極值;
(Ⅱ)當(dāng)時(shí),若不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)的單調(diào)減區(qū)間(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)的導(dǎo)函數(shù)為,對(duì)任意都有成立,則( 。
A.B.
C.D.的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)具有下列特征:,則的圖形可以是下圖中的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(diǎn)(即函數(shù)取到極值時(shí)點(diǎn)的橫坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(I)若,判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(II)若函數(shù)在內(nèi)存在極值,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) 在區(qū)間[-2,2]的最大值為20,求它在該區(qū)間的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)≥0時(shí)≥0,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案