精英家教網 > 高中數學 > 題目詳情

【題目】“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯表:

項目

男性

女性

總計

反感

10

不反感

8

總計

30

已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.

(1)請將上面的列聯表補充完整(直接寫結果,不需要寫求解過程),并據此資料分析反感“中國式過馬路”與性別是否有關?

(2)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數為X,求X的分布列和數學期望.

附:K2

.

P(K2≥k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

【答案】(1)沒有充足的理由認為反感“中國式過馬路”與性別有關; (2) .

【解析】

根據從這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率,做出“中國式過馬路”的人數,進而得出男生的人數,填好表格,再根據所給的公式求出的值,然后與臨界值作比較,即可得出結論

X的可能取值為0,1,2,通過列舉法得到事件數,分別計算出它們的概率,列出分布列,求出期望。

(1)列聯表補充如下:

性別

男性

女性

總計

反感

10

6

16

不反感

6

8

14

總計

16

14

30

由已知數據得K2的觀測值K2

所以,沒有充足的理由認為反感“中國式過馬路”與性別有關.

(2)X的可能取值為0,1,2.

P(X=0)=,P(X=1)=,

P(X=2)=,

所以X的分布列為

X

0

1

2

P

X的數學期望為E(X)=.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA平面ABC,AB⊥AC,PA=AC=3,AB=,BE=EC,AD=2DC.

(1)證明:DE⊥平面PAE;

(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設△ABC的內角A,B,C所對的邊分別是a,b,c,若AB邊上的高為 ,且a2+b2=2 ab,則C=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,OA是南北方向的一條公路,OB是北偏東45°方向的一條公路,某風景區(qū)的一段邊界為曲線C.為方便游客光,擬過曲線C上的某點分別修建與公路OA,OB垂直的兩條道路PM,PN,且PM,PN的造價分別為5萬元/百米,40萬元/百米,建立如圖所示的直角坐標系xoy,則曲線符合函數y=x+ (1≤x≤9)模型,設PM=x,修建兩條道路PM,PN的總造價為f(x)萬元,題中所涉及的長度單位均為百米.

(1)求f(x)解析式;
(2)當x為多少時,總造價f(x)最低?并求出最低造價.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,底面△ABC是直角三角形,AB=AC=1,點P是棱BB1上一點,滿足 (0≤λ≤1).

(1)若λ= ,求直線PC與平面A1BC所成角的正弦值;
(2)若二面角P﹣A1C﹣B的正弦值為 ,求λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知公差不為零的等差數列{an}中, S2=16,且成等比數列.

(1)求數列{an}的通項公式;

(2)求數列{|an|}的前n項和Tn.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線C的一個焦點與拋物線C1:y2=-16x的焦點重合,且其離心率為2.

(1)求雙曲線C的方程;

(2)求雙曲線C的漸近線與拋物線C1的準線所圍成三角形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產品的新、舊網箱養(yǎng)殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產量低于50 kg”,估計A的概率;

(2)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養(yǎng)殖方法有關:

箱產量<50 kg

箱產量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據箱產量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,,E是棱CC1中點,FAB的中點.

(1)求證:CF//平面AEB1;

(2)求點B到平面AEB1的距離.

查看答案和解析>>

同步練習冊答案