(滿(mǎn)分14分)如圖在三棱錐中,分別為棱的中點(diǎn),已知,

求證(1)直線(xiàn)平面
(2)平面平面.

證明見(jiàn)解析.

解析試題分析:(1)本題證明線(xiàn)面平行,根據(jù)其判定定理,需要在平面內(nèi)找到一條與平行的直線(xiàn),由于題中中點(diǎn)較多,容易看出,然后要交待在平面外,在平面內(nèi),即可證得結(jié)論;(2)要證兩平面垂直,一般要證明一個(gè)平面內(nèi)有一條直線(xiàn)與另一個(gè)平面垂直,由(1)可得,因此考慮能否證明與平面內(nèi)的另一條與相交的直線(xiàn)垂直,由已知三條線(xiàn)段的長(zhǎng)度,可用勾股定理證明,因此要找的兩條相交直線(xiàn)就是,由此可得線(xiàn)面垂直.
試題解析:(1)由于分別是的中點(diǎn),則有,又,,所以
(2)由(1),又,所以,又中點(diǎn),所以,,所以,所以,是平面內(nèi)兩條相交直線(xiàn),所以,又,所以平面平面
【考點(diǎn)】線(xiàn)面平行與面面垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△ABC是邊長(zhǎng)為l的等邊三角形,D、E分別是AB、AC邊上的點(diǎn),AD = AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到三棱錐A-BCF,其中
(1)證明:DE∥平面BCF;
(2)證明:CF⊥平面ABF;
(3)當(dāng)時(shí),求三棱錐F-DEG的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,底面是平行四邊形,,平面,,的中點(diǎn).
(1)求證:平面
(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖4,四邊形為正方形,平面,于點(diǎn),,交于點(diǎn).

(1)證明:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

A是△BCD平面外的一點(diǎn),E,F(xiàn)分別是BC,AD的中點(diǎn).
(1)求證:直線(xiàn)EF與BD是異面直線(xiàn);
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的幾何體中,正方形ABCD和矩形ABEF所在的平面互相垂直,M為AF的中點(diǎn),BN⊥CE.

(1)求證:CF∥平面MBD;
(2)求證:CF⊥平面BDN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱柱中,.為平行四邊形,, , 分別是的中點(diǎn).

(1)求證:;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,底面,的中點(diǎn), 的中點(diǎn),.

(1)求證:平面
(2)求與平面成角的正弦值;
(3)設(shè)點(diǎn)在線(xiàn)段上,且,平面,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知、、是直線(xiàn),是平面,給出下列命題:①若,則;
②若,則;③若,則;④若,,則;⑤若異面,則至多有一條直線(xiàn)與、都垂直.其中真命題是           .(把符合條件的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案