已知函數(shù)f(x)=|x2+(3m+5)|x|+1|的定義域為R,且函數(shù)有八個單調(diào)區(qū)間,則實數(shù)m的取值范圍為( )
A.
B.或m>-1
C.
D.或m>-1
【答案】分析:令g(x)=x2+(3m+5)|x|+1,由題意可知g(x)為偶函數(shù),且其圖象在y軸右側(cè)與x軸有二不同的交點,從而可求得實數(shù)m的取值范圍.
解答:解:∵函數(shù)f(x)=|x2+(3m+5)|x|+1|,
令g(x)=x2+(3m+5)|x|+1,
∵g(-x)=(-x)2+(3m+5)|-x|+1=x2+(3m+5)|x|+1=g(x),
∴g(x)為偶函數(shù),
∵f(x)=|x2+(3m+5)|x|+1|有八個單調(diào)區(qū)間,
∴g(x)的圖象在y軸右側(cè)與x軸有二不同的交點,
,
解得m<-
故選C.
點評:本題考查帶絕對值的函數(shù),考查二次函數(shù)的性質(zhì)及應(yīng)用,明確偶函數(shù)g(x)=x2+(3m+5)|x|+1的圖象在y軸右側(cè)與x軸有二不同的交點是關(guān)鍵,也是難點,考查分析與計算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案