20.若A={(a,c)|1≤a≤2,0≤c≤1,a,c∈R},則任。╝,c)∈A,關(guān)于x的方程ax2+2x+c=0有實根的概率為( 。
A.$\frac{1}{2}$B.$\frac{ln2}{2}$C.ln2D.1-ln2

分析 由關(guān)于x的方程ax2+2x+c=0有實根,得ac≤1,由此能求出x的方程ax2+2x+c=0有實根的概率.

解答 解:∵關(guān)于x的方程ax2+2x+c=0有實根,
∴判別式△=4-4ac≥0,解得ac≤1,
∵A={(a,c)|1≤a≤2,0≤c≤1,a,c∈R},則任。╝,c)∈A,
∴基本事件總數(shù)為:xy=1,
滿足關(guān)于x的方程ax2+2x+c=0有實根的基本事件個數(shù)為:${∫}_{1}^{2}\frac{1}{x}dx$=ln2,
∴x的方程ax2+2x+c=0有實根的概率為p=$\frac{ln2}{1}$=ln2.
故選:C.

點評 本題考查概率的求法,是中檔題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.隨機變量X的概率分布如下表,則X的方差V(X)為$\frac{3}{4}$
X0123
P$\frac{1}{8}$$\frac{3}{8}$$\frac{3}{8}$a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)ξ是一個隨機變量,且D(10ξ+10)=40,則Dξ=0.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某權(quán)威機構(gòu)發(fā)布了2014年度“城市居民幸福排行榜”,某市成為本年度城市最“幸福城”.隨后,該市某校學(xué)生會組織部分同學(xué),用“10分制”隨機調(diào)查“陽光”社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉):
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若幸福度不低于9.5分,則稱該人的幸福度為“極幸!保髲倪@16人中隨機選取3人,至多有1人是“極幸!钡母怕;
(3)以這16人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記ξ表示抽到“極幸福”的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=|ax+x2-xlna-t|-1(0<a<1)有零點,則實數(shù)t的最小值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四邊形ABCD是矩形,BC⊥平面ABEF,四邊形ABEF是梯形,∠EFA=∠FAB=90°,EF=FA=AD=1,點M是DF的中點,AB=2.
(Ⅰ)求證:BF∥平面AMC;
(Ⅱ)以A點為坐標(biāo)原點,以AF,AB,AD分別為x,y,z軸建立空間直角坐標(biāo)系,求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.我州某高中一研究性學(xué)習(xí)小組,在某一告訴公路服務(wù)區(qū)進(jìn)行社會實踐活動,從小型汽車中按進(jìn)服務(wù)區(qū)的先后,每間隔5輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速(km/h)分成六段:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100),統(tǒng)計后得到如圖的頻率分布直方圖.
(1)此研究性學(xué)習(xí)小組在采樣中,用到的是什么抽樣方法?并求這40輛小型汽車車速的眾數(shù)和中位數(shù)的估計值;
(2)若從車速在[70,80)的車輛中任抽取2輛,求車速在[75,80)的車輛數(shù)X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=|x+$\frac{4}{a}$|+|x-a|(a>0).
(1)證明:f(x)≥4;
(2)若f(3)<5,實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知曲線C上的點到點F(1,0)的距離比它到直線x=-3的距離小2.
(1)求曲線C的方程;
(2)△AOB的一個頂點為曲線C的頂點O,A、B兩點都在曲線C上,且∠AOB=90°,證明直線AB比過一定點.

查看答案和解析>>

同步練習(xí)冊答案