是否存在常數(shù)a、b使等式+…+對所有的正整數(shù)n都成立?

解析:假設(shè)存在a、b使命題成立,將n=1,2代入等式有

原式可化為+…+(n∈N*),

下面用數(shù)學(xué)歸納法證明:(1)當(dāng)n=1時,已驗(yàn)證成立.

(2)假設(shè)n=k時命題成立,就是+…+,那么當(dāng)n=k+1時,+…+

=.

就是說n=k+1時命題成立.根據(jù)(1)(2)知對一切n∈N命題成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

是否存在常數(shù)a,b使等式1-n+2-(n-1)+3-(n-2)+…+n-1=an(n+b)(n+2)對于任意的n∈N+總成立?若存在,求出來并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}是公差d≠0的等差數(shù)列,通項(xiàng)為an,{bn}是公比q≠1的等比數(shù)列.已知a1=b1=1,且a2=b2,a6=b3.

(1)求d和q;

(2)是否存在常數(shù)a,b使對于一切n∈N*都有an=logabn+b成立?若存在,則求出來;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

是否存在常數(shù)a,b使等式1-n+2-(n-1)+3-(n-2)+…+n-1=an(n+b)(n+2)對于任意的n∈N+總成立?若存在,求出來并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年山東省濟(jì)寧市兗州市高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

是否存在常數(shù)a,b使等式1-n+2-(n-1)+3-(n-2)+…+n-1=an(n+b)(n+2)對于任意的n∈N+總成立?若存在,求出來并證明;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案