【題目】如圖,△ABC為一個(gè)等腰三角形形狀的空地,腰CA的長(zhǎng)為3(百米),底AB的長(zhǎng)為4(百米).現(xiàn)決定在空地內(nèi)筑一條筆直的小路EF(寬度不計(jì)),將該空地分成一個(gè)四邊形和一個(gè)三角形,設(shè)分成的四邊形和三角形的周長(zhǎng)相等、面積分別為S1和S2
(1)若小路一端E為AC的中點(diǎn),求此時(shí)小路的長(zhǎng)度;
(2)求 的最小值.

【答案】
(1)解:因?yàn)椋篈E=CE= AE+4>CE+3 所以F不在BC上,

AE+AF+EF=CE+CB+FB+EF

所以AE=CE AF=CB+BF 4﹣BF=BF+3 BF=

cosA= =

所以EF2=AE2+AF2﹣2AE×AF×cosA=

所以EF=

E為AC中點(diǎn)時(shí),此時(shí)小路的長(zhǎng)度為 百米


(2)解:若E、F分別在AC和AB上,

sinA=

設(shè)AE=x,AF=y,

所以S2= xysinA=

S1=S三角形ABC﹣S2=2 ﹣S2

因?yàn)閤+y=3﹣x+4﹣y+3

所以x+y=5

= ﹣1

xy≤

當(dāng)且僅當(dāng)x=y= 時(shí)取等號(hào)

所以 =

當(dāng)且僅當(dāng)x=y= 時(shí)取等號(hào)

最小值是

若E、F分別在AC和BC上,

sinC=

設(shè)CE=x,CF=y

同上可得

當(dāng)且僅當(dāng)x=y= 取等號(hào)

若E、F分別在AC和BC上,最小值是


【解析】(1)根據(jù)題意可知F不在BC上,根據(jù)余弦定理求出cosA的值,然后根據(jù)余弦定理求出EF的長(zhǎng)即可;(2)若E、F分別在AC和AB上,設(shè)AE=x,AF=y,然后利用三角形的面積公式求出S2和S1=S三角形ABC﹣S2=,再根據(jù)基本不等式求出比值的最值即可,若E、F分別在AC和BC上,設(shè)CE=x,CF=y,同上根據(jù)基本不等式求出比值的最值即可.
【考點(diǎn)精析】本題主要考查了函數(shù)的最值及其幾何意義的相關(guān)知識(shí)點(diǎn),需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為了解用電量y與氣溫x℃之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了5天的用電量與當(dāng)天氣溫,得到如下統(tǒng)計(jì)表:

曰期

8月1曰

8月7日

8月14日

8月18日

8月25日

平均氣溫(℃)

33

30

32

30

25

用電量(萬(wàn)度)

38

35

41

36

30

xiyi=5446, xi2=4538, = , =
(1)請(qǐng)根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.據(jù)氣象預(yù)報(bào)9月3日的平均氣溫是 23℃,請(qǐng)預(yù)測(cè)9月3日的用電量;(結(jié)果保留整數(shù))
(2)請(qǐng)從表中任選兩天,記用電量(萬(wàn)度)超過(guò)35的天數(shù)為ξ,求ξ的概率分布列,并求其數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC, ,AB⊥AC,D是棱BB1的中點(diǎn).
(Ⅰ)證明:平面A1DC⊥平面ADC;
(Ⅱ)求平面A1DC與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若存在x∈N*使得f(x)≤2成立,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)設(shè)max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一張邊長(zhǎng)為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是(
A. cm3
B. cm3
C. cm3
D. cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)用支出與銷售額之間有如下的對(duì)應(yīng)數(shù)據(jù)(單位:萬(wàn)元):

(1)求關(guān)于的線性回歸直線方程;

(2)據(jù)此估計(jì)廣告費(fèi)用為10萬(wàn)元時(shí)銷售收入的值.

(附:對(duì)于線性回歸方程,其中

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市對(duì)貧困家庭自主創(chuàng)業(yè)給予小額貸款補(bǔ)貼,每戶貸款為2萬(wàn)元,貸款期限有6個(gè)月、12個(gè)月、18個(gè)月、24個(gè)月、36個(gè)月五種,這五種貸款期限政府分別需要補(bǔ)助200元、300元、300元、400元,從2016年享受此項(xiàng)政策的困難戶中抽取了100戶進(jìn)行了調(diào)查,選取貸款期限的頻數(shù)如表:

貸款期限

6個(gè)月

12個(gè)月

18個(gè)月

24個(gè)月

36個(gè)月

頻數(shù)

20

40

20

10

10

以上表各種貸款期限頻率作為2017年貧困家庭選擇各種貸款期限的概率.
(1)某小區(qū)2017年共有3戶準(zhǔn)備享受此項(xiàng)政策,計(jì)算其中恰有兩戶選擇貸款期限為12個(gè)月的概率;
(2)設(shè)給享受此項(xiàng)政策的某困難戶補(bǔ)貼為ξ元,寫出ξ的分布列,若預(yù)計(jì)2017年全市有3.6萬(wàn)戶享受此項(xiàng)政策,估計(jì)2017年該市共需要補(bǔ)貼多少萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記[x]表示不超過(guò)x的最大整數(shù),執(zhí)行如圖所示的程序框圖,則輸出S的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案