20.在平面直角坐標(biāo)系xoy中,已知向量$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),0≤x≤π,且f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求tanx的值;
(2)若$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{π}{3}$,求x的值;
(3)求f(x)的單調(diào)區(qū)間和最值.

分析 (1)根據(jù)向量的垂直的條件和向量的數(shù)量積公式即可求出,
(2)根據(jù)向量的數(shù)量積公式即可求出,
(3)先化簡得到$f(x)=\sqrt{3}sin(x-\frac{π}{6})$,再根據(jù)三角函數(shù)的性質(zhì)即可求出

解答 解:(1)∵$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),$\overrightarrow{m}$⊥$\overrightarrow{n}$,0≤x≤π
∴$\overrightarrow{m}$•$\overrightarrow{n}$=-$\frac{\sqrt{3}}{2}$cosx+$\frac{3}{2}$sinx=0,
∴tanx=$\frac{\sqrt{3}}{3}$
(2)∵$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),
∴$\overrightarrow{m}$•$\overrightarrow{n}$=-$\frac{\sqrt{3}}{2}$cosx+$\frac{3}{2}$sinx=|$\overrightarrow{m}$|•|$\overrightarrow{n}$|cos$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$
∴sin(x-$\frac{π}{6}$)=$\frac{1}{2}$,
∴x-$\frac{π}{6}$=$\frac{π}{6}$或x-$\frac{π}{6}$=$\frac{5π}{6}$
∴$x=\frac{π}{3}或π$;
(3)∵$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),
∴$f(x)=\sqrt{3}sin(x-\frac{π}{6})$,
∴f(x)的增區(qū)間$[0,\frac{2π}{3})$,減區(qū)間$[\frac{2π}{3},π]$;
∴$f{(x)_{max}}=f(\frac{2π}{3})=\sqrt{3}$;$f{(x)_{min}}=f(0)=-\frac{{\sqrt{3}}}{2}$.

點(diǎn)評 本題考查了向量的數(shù)量積公式和向量的垂直以及三角函數(shù)的圖象和性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出下列結(jié)論:
①(cosx)′=sinx;
②(sin$\frac{π}{3}$)′=cos$\frac{π}{3}$;
③若y=$\frac{1}{{x}^{2}}$,則y′=-$\frac{1}{x}$;
④(-$\frac{1}{\sqrt{x}}$)′=$\frac{1}{2x\sqrt{x}}$.
其中正確的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,且a1=2,nan+1=2(n+1)an
(1)記bn=$\frac{{a}_{n}}{n}$,求數(shù)列{bn}的通項bn;      
(2)求通項an及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.無錫市政府決定規(guī)劃地鐵三號線:該線起於惠山區(qū)惠山城鐵站,止於無錫新區(qū)碩放空港產(chǎn)業(yè)園內(nèi)的無錫機(jī)場站,全長28公里,目前惠山城鐵站和無錫機(jī)場站兩個站點(diǎn)已經(jīng)建好,余下的工程是在已經(jīng)建好的站點(diǎn)之間鋪設(shè)軌道和等距離修建?空荆(jīng)有關(guān)部門預(yù)算,修建一個?空镜馁M(fèi)用為6400萬元,鋪設(shè)距離為x公里的相鄰兩個?空局g的軌道費(fèi)用為400x3+20x萬元.設(shè)余下工程的總費(fèi)用為f(x)萬元.(停靠站位于軌道兩側(cè),不影響軌道總長度)
(1)試將f(x)表示成x的函數(shù);
(2)需要建多少個?空静拍苁构こ藤M(fèi)用最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.$\int_{-4}^4{\sqrt{16-{x^2}}}dx+\int_{-\frac{π}{2}}^{\frac{π}{2}}{x^3}dx-\int_1^2{({\frac{1}{x}-x})dx=}$8π+ln2-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\overrightarrow{a}$=(λ+1,0,2λ),$\overrightarrow$=(6,0,2),$\overrightarrow{a}$∥$\overrightarrow$,則λ的值為(  )
A.$\frac{1}{5}$B.5C.$-\frac{1}{5}$D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=2x,若從區(qū)間[-2,2]上任取一個實(shí)數(shù)x,則使不等式f(x)>2成立的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2016}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)已知角α的終邊上一點(diǎn)P的坐標(biāo)為$(-\sqrt{3},2)$,求sinα,cosα和tanα.
(2)在[0°,720°]中與-21°16′終邊相同的角有哪些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cosβ,sinβ)$,且$α-β=\frac{2π}{3}$,則$\overrightarrow a$與$\overrightarrow a+\overrightarrow b$的夾角為(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案