(本小題共14分)

如圖,在三棱錐中,,,

(Ⅰ)求證:;

(Ⅱ)求二面角的大小。

(Ⅰ)證明見解析。

(Ⅱ)


解析:

解法一:

(Ⅰ)取中點,連結(jié)。

,。

。

,平面。

平面,

(Ⅱ),,

,

,即,且,

平面。

中點.連結(jié)

,。

在平面內(nèi)的射影,

。

是二面角的平面角。

中,,,

。二面角的大小為。

解法二:

(Ⅰ),。

,平面。

平面。

(Ⅱ)如圖,以為原點建立空間直角坐標系。

,

。

中點,連結(jié)。

,,

是二面角的平面角。

,,,

二面角的大小為。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本小題共14分)

      數(shù)列的前n項和為,點在直線

上.

   (I)求證:數(shù)列是等差數(shù)列;

   (II)若數(shù)列滿足,求數(shù)列的前n項和

   (III)設,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題共14分)

如圖,四棱錐的底面是正方形,,點E在棱PB上。

(Ⅰ)求證:平面;

(Ⅱ)當EPB的中點時,求AE與平面PDB所成的角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (2009北京理)(本小題共14分)

已知雙曲線的離心率為,右準線方程為

(Ⅰ)求雙曲線的方程;

(Ⅱ)設直線是圓上動點處的切線,與雙曲線

于不同的兩點,證明的大小為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆度廣東省高二上學期11月月考理科數(shù)學試卷 題型:解答題

(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC,點E是PC的中點,作EFPB交PB于點F

⑴求證:PA//平面EDB

⑵求證:PB平面EFD

⑶求二面角C-PB-D的大小

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市崇文區(qū)高三下學期二模數(shù)學(文)試題 題型:解答題

(本小題共14分)

正方體的棱長為的交點,的中點.

(Ⅰ)求證:直線∥平面

(Ⅱ)求證:平面;

(Ⅲ)求三棱錐的體積.

 

查看答案和解析>>

同步練習冊答案