已知橢圓的中心在坐標原點,焦點在x軸上,橢圓與x軸的交點到兩焦點的距離分別是3和1,則橢圓的標準方程是______.
設橢圓的標準方程為
x2
a2
+
y2
b2
=1(a>b>0)
,
由于橢圓與x軸的交點到兩焦點的距離分別是3和1,
a+c=3
a-c=1

解得
a=2
c=1
,
則b2=a2-c2=3,
則橢圓的標準方程是
x2
4
+
y2
3
=1.
故答案為:
x2
4
+
y2
3
=1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓為常數(shù),且,過點且以向量為方向向量的直線與橢圓交于點,直線交橢圓于點 (為坐標原點).(1)的面積的表達式;(2)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設F1,F(xiàn)2是橢圓E:
x2
a2
+2y2=1
a>
2
2
)的左右焦點,過F1的直線l與E相交于A、B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列
(1)求|AB|;
(2)若直線l的斜率為1,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)過,M(2,
2
),N(
6
,1)兩點,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,長軸的一個頂點坐標為(2,0),離心率為
3
2

(1)求橢圓C的標準方程;
(2)設F1,F(xiàn)2為橢圓C的焦點,P為橢圓上一點,且PF1⊥PF2,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

△ABC的周長是8,B(-1,0),C(1,0),則頂點A的軌跡方程是( 。
A.
x2
9
+
y2
8
=1(x≠±3)
B.
x2
9
+
y2
8
=1(x≠0)
C.
x2
4
+
y2
3
=1(y≠0)
D.
x2
3
+
y2
4
=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),離心率為
2
2
的橢圓經(jīng)過點(
6
,1).
(1)求該橢圓的標準方程;
(2)過橢圓的一個焦點且互相垂直的直線l1,l2分別與橢圓交于A,B和C,D,是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|?若存在,求出實數(shù)λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1的焦點坐標為(±1,0),橢圓經(jīng)過點(1,
2
2

(1)求橢圓方程;
(2)過橢圓左頂點M(-a,0)與直線x=a上點N的直線交橢圓于點P,求
OP
ON
的值.
(3)過右焦點且不與對稱軸平行的直線l交橢圓于A、B兩點,點Q(2,t),若KQA+KQB=2與l的斜率無關,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設p為橢圓等
x2
m
+
y2
24
=1(m≥32)上的一點,F(xiàn)1,F(xiàn)2是該橢圓的兩個焦點,若cos∠F1PF2=
5
13
則△PF1F2的面積是( 。
A.48B.16
C.32D.與m有關的值

查看答案和解析>>

同步練習冊答案