【題目】已知函數(shù),其中均為實(shí)數(shù), 為自然對(duì)數(shù)的底數(shù).
(I)求函數(shù)的極值;
(II)設(shè),若對(duì)任意的,
恒成立,求實(shí)數(shù)的最小值.
【答案】(1)當(dāng)時(shí), 取得極大值,無(wú)極小值;(2).
【解析】試題分析:(1)由題對(duì) 得,研究其單調(diào)性,可得當(dāng)時(shí), 取得極大值,無(wú)極小值;
(2)由題當(dāng)時(shí), ,由單調(diào)性可得在區(qū)間上為增函數(shù),根據(jù),構(gòu)造函數(shù),
由單調(diào)性可得在區(qū)間上為增函數(shù),不妨設(shè),
則等價(jià)于,
即,
故又構(gòu)造函數(shù),
可知在區(qū)間上為減函數(shù),∴在區(qū)間上恒成立,
即在區(qū)間上恒成立,
∴,設(shè)
則,
∵,
∴,則在區(qū)間上為減函數(shù),
∴在區(qū)間上的最大值,∴,
試題解析:(1)由題得, ,
令,得.,
列表如下:
1 | |||
大于0 | 0 | 小于0 | |
極大值 |
∴當(dāng)時(shí), 取得極大值,無(wú)極小值;
(2)當(dāng)時(shí), ,
∵在區(qū)間上恒成立,
∴在區(qū)間上為增函數(shù),
設(shè),
∵在區(qū)間上恒成立,
∴在區(qū)間上為增函數(shù),不妨設(shè),
則等價(jià)于,
即,
設(shè),
則在區(qū)間上為減函數(shù),
∴在區(qū)間上恒成立,
∴在區(qū)間上恒成立,
∴,
設(shè),
∵,
∴,則在區(qū)間上為減函數(shù),
∴在區(qū)間上的最大值,∴,
∴實(shí)數(shù)的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)為,過(guò)拋物線(xiàn)上一點(diǎn)作拋物線(xiàn)的切線(xiàn)交軸于點(diǎn),交軸于點(diǎn),當(dāng)時(shí),.
(1)判斷的形狀,并求拋物線(xiàn)的方程;
(2)若兩點(diǎn)在拋物線(xiàn)上,且滿(mǎn)足,其中點(diǎn),若拋物線(xiàn)上存在異于的點(diǎn),使得經(jīng)過(guò)三點(diǎn)的圓和拋物線(xiàn)在點(diǎn)處有相同的切線(xiàn),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合P={x|-2≤x≤10},Q={x|1-m≤x≤1+m}.
(1)求集合RP;
(2)若PQ,求實(shí)數(shù)m的取值范圍;
(3)若P∩Q=Q,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱(chēng)該數(shù)集為“可倒數(shù)集”.
(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;
(2)試寫(xiě)出一個(gè)含3個(gè)元素的可倒數(shù)集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了調(diào)查喜歡語(yǔ)文學(xué)科與性別的關(guān)系,隨機(jī)調(diào)查了一些學(xué)生情況,具體數(shù)據(jù)如下表:
調(diào)查統(tǒng)計(jì) | 不喜歡語(yǔ)文 | 喜歡語(yǔ)文 |
男 | 13 | 10 |
女 | 7 | 20 |
為了判斷喜歡語(yǔ)文學(xué)科是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2的觀測(cè)值
k=≈4.844,因?yàn)閗≥3.841,根據(jù)下表中的參考數(shù)據(jù):
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
判定喜歡語(yǔ)文學(xué)科與性別有關(guān)系,那么這種判斷出錯(cuò)的可能性為( )
A. 95% B. 50% C. 25% D. 5%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線(xiàn)是過(guò)點(diǎn),傾斜角為的直線(xiàn),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程是.
(1)求曲線(xiàn)的普通方程和曲線(xiàn)的一個(gè)參數(shù)方程;
(2)曲線(xiàn)與曲線(xiàn)相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會(huì)”等五個(gè)社團(tuán),若每名同學(xué)必須參加且只能參加1個(gè)社團(tuán)且每個(gè)社團(tuán)至多兩人參加,則這6個(gè)人中沒(méi)有人參加“演講團(tuán)”的不同參加方法數(shù)為( )
A. 3600 B. 1080 C. 1440 D. 2520
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若恒成立,求的取值范圍;
(Ⅱ)設(shè),,(為自然對(duì)數(shù)的底數(shù)).是否存在常數(shù),使恒成立,若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)如果對(duì)于任意的,都有成立,試求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com