【題目】已知橢圓+=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,拋物線y2= (a+c)x與橢圓交于B,C兩點(diǎn),若四邊形ABFC是菱形,則橢圓的離心率等于( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一個(gè)以、為半徑的扇形池塘,在、上分別取點(diǎn)、,作、分別交弧于點(diǎn)、,且,現(xiàn)用漁網(wǎng)沿著、、、將池塘分成如圖所示的養(yǎng)殖區(qū)域.已知, , ().
(1)若區(qū)域Ⅱ的總面積為,求的值;
(2)若養(yǎng)殖區(qū)域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分別是30萬(wàn)元、40萬(wàn)元、20萬(wàn)元,試問(wèn):當(dāng)為多少時(shí),年總收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次水下科研考察活動(dòng)中,需要潛水員潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)已往經(jīng)驗(yàn),潛水員下潛的平均速度為(米/單位時(shí)間),每單位時(shí)間的用氧量為(升),在水底作業(yè)10個(gè)單位時(shí)間,每單位時(shí)間用氧量為(升),返回水面的平均速度為(米/單位時(shí)間),每單位時(shí)間用氧量為(升),記該潛水員在此次考察活動(dòng)中的總用氧量為(升).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)若,求當(dāng)下潛速度取什么值時(shí),總用氧量最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)若,求曲線在處的切線方程;
(2)若無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有兩個(gè)極值點(diǎn), ,且,記點(diǎn), .
(Ⅰ)求直線的方程;
(Ⅱ)證明:線段與曲線有且只有一個(gè)異于、的公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù) 的極值;
(2)若在內(nèi)為單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(3)對(duì)于,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)求下列函數(shù)的解析式:
(1)已知,求;
(2) 已知函數(shù)是一次函數(shù),且滿足關(guān)系式,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知右焦點(diǎn)為的橢圓過(guò)點(diǎn),且橢圓關(guān)于直線對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)且不垂直于軸的直線與橢圓交于,兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線與軸的交點(diǎn)為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若BA,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈R時(shí),不存在元素x使x∈A與x∈B同時(shí)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com