已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說明理由.
(1);(2)上的最大值為;(3)對(duì)任意給定的正實(shí)數(shù),曲線上總存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在y軸上.

試題分析:(1)求實(shí)數(shù)的值,由函數(shù),由圖像過坐標(biāo)原點(diǎn),得,且根據(jù)函數(shù)在點(diǎn)處的切線的斜率是,由導(dǎo)數(shù)幾何意義可得,建立方程組,可確定實(shí)數(shù)的值,進(jìn)而可確定函數(shù)的解析式;(2)求在區(qū)間的最大值,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240346508311225.png" style="vertical-align:middle;" />,由于是分段函數(shù),可分段求最大值,最后確定最大值,當(dāng)時(shí),,求導(dǎo)得,,令,可得上的最大值為,當(dāng)時(shí),.對(duì)討論,確定函數(shù)的單調(diào)性,即可求得結(jié)論;(3)這是探索性命題,可假設(shè)曲線上存在兩點(diǎn)滿足題設(shè)要求,則點(diǎn)只能在軸兩側(cè).設(shè)的坐標(biāo),由此入手能得到對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上.
試題解析:(1)當(dāng)時(shí), (1分)
依題意,得,解得.     (3分)
(2)由(1)知,
①當(dāng)時(shí)     (4分)
當(dāng)變化時(shí)的變化情況如下表:


0





0
+
0


單調(diào)遞減
極小值
單調(diào)遞增
極大值
單調(diào)遞減

所以上的最大值為.                  (6分)
②當(dāng)時(shí),
當(dāng)時(shí), ,所以的最大值為0 ;
當(dāng)時(shí),上單調(diào)遞增,所以上的最大值為.(7分)
綜上所述,
當(dāng),即時(shí),上的最大值為2;
當(dāng),即時(shí),上的最大值為 .     (9分) 
(3)假設(shè)曲線上存在兩點(diǎn)滿足題設(shè)要求,則點(diǎn)只能在y軸的兩側(cè).
不妨設(shè),則,顯然
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034650441538.png" style="vertical-align:middle;" />是以為直角頂點(diǎn)的直角三角形,
所以,即    ①
若方程①有解,則存在滿足題意的兩點(diǎn);若方程①無解,則不存在滿足題意的兩點(diǎn)
,則,代入①式得,
,而此方程無實(shí)數(shù)解,因此.                        (11分) 
此時(shí),代入①式得,   ②
,則,所以上單調(diào)遞增,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034652282337.png" style="vertical-align:middle;" />,所以,當(dāng)時(shí),,所以的取值范圍為。所以對(duì)于,方程②總有解,即方程①總有解.
因此對(duì)任意給定的正實(shí)數(shù),曲線上總存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在y軸上.                (14分) 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù), 
(1)若,求曲線處的切線方程;
(2)若對(duì)任意的,都有恒成立,求的最小值;
(3)設(shè),,若,為曲線的兩個(gè)不同點(diǎn),滿足,且,使得曲線處的切線與直線AB平行,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=exkx2,x∈R.
(1)若k,求證:當(dāng)x∈(0,+∞)時(shí),f(x)>1;
(2)若f(x)在區(qū)間(0,+∞)上單調(diào)遞增,試求k的取值范圍;
(3)求證:<e4(n∈N*)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若,且對(duì)于任意恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)函數(shù),
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln x-ax(a∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=且g(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=aln x(a為常數(shù)).
(1)若曲線yf(x)在點(diǎn)(1,f(1))處的切線與直線x+2y-5=0垂直,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)x≥1時(shí),f(x)≤2x-3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln x-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)m∈R,對(duì)任意的a∈(-1,1),總存在x0∈[1,e],使得不等式maf(x0)<0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是    ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,其中(    )
A.恒取正值或恒取負(fù)值B.有時(shí)可以取0
C.恒取正值D.可以取正值和負(fù)值,但不能取0

查看答案和解析>>

同步練習(xí)冊(cè)答案