如圖,直線m,n和平面a滿足m∥n,m∥a,n?a.求證:n∥a.
考點:直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:利用線面平行的性質(zhì)定理和判定定理解答.
解答: 證明:∵m∥a,過m作平面β與平面α相交于l,
∴m∥l,
∵m∥n,
∴n∥l,
又n?a,l?α,
∴n∥a.
點評:本題考查了線面平行的性質(zhì)定理的運用以及判定定理的運用的運用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若P=0.9,則輸出的n=(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x+
a2
x
(a>0).
(1)求證:f(x)在(0,a]上是減函數(shù),在(a,+∞)上是增函數(shù);
(2)求函數(shù)g(x)=4x+
9
x
在[1,3]上最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(2x+
π
6
)在x∈[-
π
6
,
π
3
]上的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
2sin(3x+
π
4
)-1
的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=2sin(
k
6
x+
2
)(k>0)的最小正周期不大于3,則當k取最小正整數(shù)時y的圖象( 。
A、關(guān)于原點對稱
B、關(guān)于x軸對稱
C、關(guān)于y軸對稱
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x>0,用作商法比較x2+3x+2與x+2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an=
2
S
2
n
2Sn-1
(n≥2).
(1)求證:數(shù)列{
1
Sn
}為等差數(shù)列;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角θ的終邊經(jīng)過點P(-4cosα,3cosα),α∈{α|π<α<2π,α≠
2
},則sinθ+cosθ=
 

查看答案和解析>>

同步練習冊答案