一個以原點為圓心的圓與圓x2+y2+8x─4y=0關(guān)于直線l對稱,則直線l的方程是________

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1
(a,b>0)與雙曲線G:x2-y2=4,若橢圓E的頂點恰為雙曲線G的焦點,橢圓E的焦點恰為雙曲線G的頂點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在一個以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A、B,且
OA
OB
?若存在請求出該圓的方程,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高三數(shù)學(xué)教學(xué)與測試 題型:022

一個以原點為圓心的圓與圓+8x-4y=0關(guān)于直線l對稱,則直線l的方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓E:數(shù)學(xué)公式(a,b>0)與雙曲線G:x2-y2=4,若橢圓E的頂點恰為雙曲線G的焦點,橢圓E的焦點恰為雙曲線G的頂點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在一個以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A、B,且數(shù)學(xué)公式?若存在請求出該圓的方程,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
b2
=1
(a,b>0)與雙曲線G:x2-y2=4,若橢圓E的頂點恰為雙曲線G的焦點,橢圓E的焦點恰為雙曲線G的頂點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在一個以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A、B,且
OA
OB
?若存在請求出該圓的方程,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年陜西省西安市西工大附中高考數(shù)學(xué)四模試卷(理科)(解析版) 題型:解答題

已知橢圓E:(a,b>0)與雙曲線G:x2-y2=4,若橢圓E的頂點恰為雙曲線G的焦點,橢圓E的焦點恰為雙曲線G的頂點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在一個以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A、B,且?若存在請求出該圓的方程,若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案