19C.解:由,所以,所以,因為f(x)=x,所以解得x=-1或-2或2,所以選C

調查某醫(yī)院某段時間內嬰兒出生時間與性別的關系,得到以下數(shù)據(jù)。

晚上

白天

合計

男嬰

24

31

55

女嬰

8

26

34

合計

32

57

89

試問有多大把握認為嬰兒的性別與出生時間有關系?

嬰兒的出生時間與性別是相互獨立的


解析:

解:由公式

由于,所以只有10%的把握認為嬰兒的出生時間與性別有關,故嬰兒的出生時間與性別是相互獨立的(也可以說沒有充分的證據(jù)顯示嬰兒的性別與其出生時間有關。)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(天津卷理12)一個正方體的各定點均在同一球的球面上,若該球的體積為,則該正方體的表面積為                    .

解析:由,所以,表面積為.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省內江市高二(下)期末數(shù)學試卷(理科)(解析版) 題型:填空題

先閱讀第(1)題的解法,再解決第(2)題:
(1)已知向量,求x2+y2的最小值.
解:由,當時取等號,
所以x2+y2的最小值為
(2)已知實數(shù)x,y,z滿足2x+3y+z=1,則x2+y2+z2的最小值為   

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆吉林長春市高二第二次月考文科數(shù)學試卷(解析版) 題型:解答題

⊙O1和⊙O2的極坐標方程分別為

⑴把⊙O1和⊙O2的極坐標方程化為直角坐標方程;

⑵求經過⊙O1,⊙O2交點的直線的直角坐標方程.

【解析】本試題主要是考查了極坐標的返程和直角坐標方程的轉化和簡單的圓冤啊位置關系的運用

(1)中,借助于公式,,將極坐標方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.

(I),,由.所以

為⊙O1的直角坐標方程.

同理為⊙O2的直角坐標方程.

(II)解法一:由解得,

即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標方程為y=-x

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市普陀區(qū)高三年級第二次質量調研二模理科試卷(解析版) 題型:解答題

已知數(shù)列是首項為的等比數(shù)列,且滿足.

(1)   求常數(shù)的值和數(shù)列的通項公式;

(2)   若抽去數(shù)列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數(shù)列,試寫出數(shù)列的通項公式;

(3) 在(2)的條件下,設數(shù)列的前項和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請說明理由.

【解析】第一問中解:由,,

又因為存在常數(shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項是2,公比為2的等比數(shù)列,即.

此時也滿足,則所求常數(shù)的值為1且

第二問中,解:由等比數(shù)列的性質得:

(i)當時,;

(ii) 當時,

所以

第三問假設存在正整數(shù)n滿足條件,則,

則(i)當時,

,

 

查看答案和解析>>

同步練習冊答案