【題目】已知.

(1)解關(guān)于的不等式;

(2)若不等式的解集為,求實數(shù)的值.

【答案】(1);(2).

【解析】試題分析:(1)由f(1)=-3a(6a)6=-a26a3,得a26a-3<0,求解即可;

(2)f(x)>b的解集為(-1,3)等價于方程-3x2a(6a)x6b=0的兩根為-1,3,由根與系數(shù)的關(guān)系求解即可.

試題解析:

(1)∵f(x)=-3x2a(6a)x6,

f(1)=-3a(6a)6=-a26a3,

∴原不等式可化為a26a-3<0,解得3-2<a<32.

∴原不等式的解集為{a|32<a<32}

(2)f(x)>b的解集為(-1,3)等價于方程-3x2a(6a)x6b=0的兩根為-1,3,

等價于解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于疫情影響,今年我們學(xué)校開展線上教學(xué),高一年級某班班主任為了了解學(xué)生上網(wǎng)學(xué)習(xí)時間,對本班40名學(xué)生某天上網(wǎng)學(xué)習(xí)時間進行了調(diào)查,將數(shù)據(jù)(取整數(shù))整理后,繪制出如圖所示頻率分布直方圖,已知從左到右各個小組的頻率分別是0.150.25,0.35,0.20,0.05,則根據(jù)直方圖所提供的信息.

1)這一天上網(wǎng)學(xué)習(xí)時間在分鐘之間的學(xué)生有多少人?

2)這40位同學(xué)的線上平均學(xué)習(xí)時間是多少?

3)如果只用這40名學(xué)生這一天上網(wǎng)學(xué)習(xí)時間作為樣本去推斷該校高一年級全體學(xué)生該天的上網(wǎng)學(xué)習(xí)時間,這樣推斷是否合理?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)2017年招聘員工,其中A、B、C、D、E五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:

(Ⅰ)從表中所有應(yīng)聘人員中隨機選擇1人,試估計此人被錄用的概率;

(Ⅱ)從應(yīng)聘E崗位的6人中隨機選擇1名男性和1名女性,求這2人均被錄用的概率;

表中AB、CD、E各崗位的男性、女性錄用比例都接近(二者之差的絕對值不大于5%),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請寫出這四種崗位.(只需寫出結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大型活動即將舉行,為了做好接待工作,組委會招募了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛運動,其余人不喜愛運動.

(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:

喜愛運動

不喜愛運動

總計

男志愿者

女志愿者

總計

(2)根據(jù)列聯(lián)表判斷能否有℅的把握認為性別與喜愛運動有關(guān)?

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式: ,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的一系列對應(yīng)值如下表:

1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;

2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時,方程 恰有兩個不同的解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果雙曲線的離心率e,則稱此雙曲線為黃金雙曲線.有以下幾個命題:①雙曲線是黃金雙曲線;②雙曲線是黃金雙曲線;③在雙曲線 (a>0,b>0)中,F1為左焦點,A2為右頂點,B1(0,b),若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;④在雙曲線 (a>0,b>0)中,過右焦點F2作實軸的垂線交雙曲線于MN兩點,O為坐標(biāo)原點,若∠MON=120°,則該雙曲線是黃金雙曲線.其中正確命題的序號為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是拋物線的焦點,是拋物線在第一象限內(nèi)的點,且,

(I) 點的坐標(biāo);

(II)為圓心的動圓與軸分別交于兩點,延長分別交拋物線兩點;

①求直線的斜率;

②延長軸于點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)bc分別是先后拋擲一顆骰子得到的點數(shù),則方程x2﹣bx+c=0有實根的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸與短軸之和為6,橢圓上任一點到兩焦點 的距離之和為4.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓交于, 兩點, , 在橢圓上,且 兩點關(guān)于直線對稱,問:是否存在實數(shù),使,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案