A={(x,y)|ax-y2+b=0},B={(x,y)|x2-yx-b=0},已知A∩B{(1,2)},求a、b.

解析:由A∩B{(1,2)},知x=1,y=2滿足方程組將x=1,y=2代入得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l的方程為(a+1)x+y-2-a=0(x∈R).
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若a>-1,直線l與x軸、y軸分別交于M、N兩點(diǎn),求△OMN的面積取得最小值時(shí),直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①若函數(shù)f(x)=a(x3-x)在區(qū)間(-
3
3
3
3
)為減函數(shù),則a>0;
②函數(shù)f(x)=lg(ax+1)的定義域是{x|x>-
1
a
}
;
③當(dāng)x>0且x≠1時(shí),有lnx+
1
lnx
≥2
;
④函數(shù)y=x2,y=(
1
2
)x,y=x5+1,y=x,y=ax(a>1)
中,冪函數(shù)有2個(gè).
所有正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線l的方程為(a+1)x+y-2-a=0(x∈R).
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若a>-1,直線l與x軸、y軸分別交于M、N兩點(diǎn),求△OMN的面積取得最小值時(shí),直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線l的方程為(a+1)x+y-2-a=0(x∈R).
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若a>-1,直線l與x軸、y軸分別交于M、N兩點(diǎn),求△OMN的面積取得最小值時(shí),直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 直線與方程》2011年單元測(cè)試卷(解析版) 題型:解答題

設(shè)直線l的方程為(a+1)x+y-2-a=0(x∈R).
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若a>-1,直線l與x軸、y軸分別交于M、N兩點(diǎn),求△OMN的面積取得最小值時(shí),直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案