【題目】已知函數(shù)f(x)=x﹣ .
(1)利用定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)當(dāng)x∈(0,1)時(shí),tf(2x)≥2x﹣1恒成立,求實(shí)數(shù)t的取值范圍.
【答案】
(1)證明:任取x1、x2∈(0,+∞),且x1<x2,
則f(x1)﹣f(x2)=(x1﹣ )﹣(x2﹣ )= ,
∵0<x1<x2,∴1+x1x2>0,x1x2>0,x1﹣x2<0,
∴ <0,
即f(x1)﹣f(x2)<0,
∴f(x1)<f(x2),
∴函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù)
(2)解:∵t(2x﹣ )≥2x﹣1,
∴ ≥2x﹣1
∵x∈(0,1],∴1<2x≤2,
∴t≥ 恒成立,設(shè)g(x)= =1﹣ ,
顯然g(x)在 (0,1]上為增函數(shù),
g(x)的最大值為g(1)= ,故t的取值范圍是[ ,+∞)
【解析】1、由定義法證明函數(shù)的單調(diào)性。
2、根據(jù)指數(shù)函數(shù)的單調(diào)性可得當(dāng)x∈(0,1],∴1<2x≤2 ,恒成立,設(shè)g(x)在 (0,1]上為增函數(shù),g(x)的最大值為g(1)= .t的取值范圍是[ ,+∞)
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a、b、c∈R,a>b,則下列不等式成立的是( 。
A.
B.a2>b2
C.a(c2+1)>b(c2+1)
D.a|c|>b|c|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場種植黃瓜,根據(jù)多年的市場行情得知,從春節(jié)起的300天內(nèi),黃瓜市場售價(jià)與上市時(shí)間的關(guān)系用圖1所示的一條折線表示,黃瓜的種植成本與上市時(shí)間的關(guān)系用圖2所示的拋物線表示.(注:市場售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天)
(1)寫出圖1表示的市場售價(jià)與時(shí)間的函數(shù)關(guān)系式P=f(t);寫出圖2表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q=g(x);
(2)認(rèn)定市場售價(jià)減去種植成本為純收益,問從春節(jié)開始的第幾天上市的黃瓜純收益最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各小題中,p是q的充分不必要條件的是( ) ①p:m<﹣2或m>6,q:y=x2+mx+m+3有兩個(gè)零點(diǎn);
② ,q:y=f(x)是偶函數(shù);
③p:cosα=cosβ,q:tanα=tanβ;
④p:A∩B=A,q:(UB)(UA)
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+a2﹣1.
(1)若對(duì)任意的x∈R均有f(1﹣x)=f(1+x),求實(shí)數(shù)a的值;
(2)當(dāng)x∈[﹣1,1]時(shí),求f(x)的最小值,用g(a)表示其最小值,判斷g(a)的奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F為拋物線y 2=﹣8x的焦點(diǎn),O為原點(diǎn),點(diǎn)P是拋物線準(zhǔn)線上一動(dòng)點(diǎn),點(diǎn)A在拋物線上,且|AF|=4,則|PA|+|PO|的最小值為( )
A.6
B.
C.
D.4+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x+2,那么不等式2f(x)﹣1<0的解集是( )
A.
B. 或
C.
D. 或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是 (t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2+12ρcosθ+11=0. (Ⅰ)說明C是哪種曲線?并將C的方程化為直角坐標(biāo)方程;
(Ⅱ)直線l與C交于A,B兩點(diǎn),|AB|= ,求l的斜率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com