某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分為5組:分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(I)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(II)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?


0.100
0.050
0.010
0.001
k
2.706
3.841
6.635
10.828
 

25周歲以上組                          25周歲以下組

(I)(II)沒有把握

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

從某學(xué)校高三年級(jí)男生隨機(jī)抽取若干名測(cè)量身高,發(fā)現(xiàn)測(cè)量數(shù)據(jù)全部介于155cm和195cm之間且每個(gè)男生被抽取到的概率為,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),┅,第八組[190,195),右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組的頻數(shù)均為4,第六組,第七組,第八組的頻率依次構(gòu)成等差數(shù)列。

(I)補(bǔ)充完整頻率分布直方圖,并估計(jì)該校高三年級(jí)全體男生身高不低于180cm的人數(shù);
(II)從最后三組中任取2名學(xué)生參加學(xué);@球隊(duì),求他們來自不同組的事件概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校高三4班有50名學(xué)生進(jìn)行了一場(chǎng)投籃測(cè)試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對(duì)全班的學(xué)生進(jìn)行編號(hào)(1~50號(hào)),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

編號(hào)
性別
投籃成績
2

90
7

60
12

75
17

80
22

83
27

85
32

75
37

80
42

70
47

60
甲抽取的樣本數(shù)據(jù)
編號(hào)
性別
投籃成績
1

95
8

85
10

85
20

70
23

70
28

80
33

60
35

65
43

70
48

60
乙抽取的樣本數(shù)據(jù)
(Ⅰ)觀察抽取的樣本數(shù)據(jù),若從男同學(xué)中抽取兩名,求兩名男同學(xué)中恰有一名非優(yōu)秀的概率.
(Ⅱ)請(qǐng)你根據(jù)抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績和性別有關(guān)?
 
優(yōu)秀
非優(yōu)秀
合計(jì)

 
 
 

 
 
 
合計(jì)
 
 
10
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.
下面的臨界值表供參考:

0.15
0.10
0.05
0.010
0.005
0.001

2.072
2.706
3.841
6.635
7.879
10.828
(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市芙蓉社區(qū)為了解家庭月均用水量(單位:噸),從社區(qū)中隨機(jī)抽查100戶,獲得每戶2013年3月的用水量,并制作了頻率分布表和頻率分布直方圖(如圖).

(Ⅰ)分別求出頻率分布表中a、b的值,并估計(jì)社區(qū)內(nèi)家庭月用水量不超過3噸的頻率;
(Ⅱ)設(shè)是月用水量為[0,2)的家庭代表.是月用水量為[2,4]的家庭代表.若從這五位代表中任選兩人參加水價(jià)聽證會(huì),請(qǐng)列舉出所有不同的選法,并求家庭代表至少有一人被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

PM2.5是指懸浮在空氣中的空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095-2012, PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35~75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測(cè)值數(shù)據(jù)中隨機(jī)地抽取12天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值頻數(shù)如莖葉圖所示(十位為莖,個(gè)位為葉):

(I)求空氣質(zhì)量為超標(biāo)的數(shù)據(jù)的平均數(shù)與方差;
(II)從空氣質(zhì)量為二級(jí)的數(shù)據(jù)中任取2個(gè),求這2個(gè)數(shù)據(jù)的和小于100的概率;
(III)以這12天的PM2.5日均值來估計(jì)2012年的空氣質(zhì)量情況,估計(jì)2012年(366天)大約有多少天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
 
5
 
女生
10
 
 
合計(jì)
 
 
50
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否在犯錯(cuò)誤的概率不超過0.5%的前提下認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005]
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7名身高互不相等的學(xué)生,分別按下列要求排列,各有多少種不同的排法?
(1)7人站成一排,要求最高的站在中間,并向左、右兩邊看,身高逐個(gè)遞減;
(2)任取6名學(xué)生,排成二排三列,使每一列的前排學(xué)生比后排學(xué)生矮.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

單價(jià)x(元)
8
8.2
8.4
8.6
8.8
9
銷量y (件 )
90
84
83
80
75
68
(I)求銷量與單價(jià)間的回歸直線方程;
(II)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(I)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理科)(本小題滿分12分)PM2.5是指懸浮在空氣中的空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095 – 2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米 ~ 75毫克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo)。從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測(cè)值數(shù)據(jù)中隨機(jī)地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值頻數(shù)如下表所示:

PM2.5日均值
(微克/立方米)
[25,35]
(35,45]
(45,55]
(55,65]
(65,75]
(75,85]
頻數(shù)
3
1
1
1
1
3
(1)從這10天的PM2.5日均值監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取3天,求恰有1天空氣質(zhì)量達(dá)到一級(jí)的概率;(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列;(3)以這10天的PM2.5日均值來估計(jì)一年的空氣質(zhì)量狀況,則一年(按366天算)中平均有多少天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí)。(精確到整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案