已知y=f(x)為奇函數(shù),當(dāng)x≥0時(shí)f(x)=x(1-x),則當(dāng)x≤0時(shí),f(x)=


  1. A.
    x(x-1)
  2. B.
    -x(x+1)
  3. C.
    x(x+1)
  4. D.
    -x(x-1)
C
分析:知道x≥0時(shí)的解析式,只要求x<0時(shí)的解析式,令x<0,則-x>0,根據(jù)函數(shù)的奇偶性代入即可.
解答:令x≤0,則-x≥0
∴f(-x)=-x(1+x)
又∵y=f(x)為奇函數(shù)
∴f(-x)=-f(x)
∴x≤0時(shí),f(x)=x(1+x)
故選C
點(diǎn)評(píng):本題考查函數(shù)的奇偶性,求函數(shù)解析式的解答題關(guān)鍵是最后解析式是否能夠合并,否則要用分段函數(shù)的形式表示.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、已知y=f(x)為奇函數(shù),當(dāng)x≥0時(shí)f(x)=x(1-x),則當(dāng)x≤0時(shí),f(x)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、已知y=f(x)為奇函數(shù),當(dāng)x≥0時(shí)f(x)=x(1-x),則當(dāng)x≤0時(shí),則f(x)=
x(1+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x-3,則當(dāng)x<0時(shí),則f(x)=
-x2-2x+3
-x2-2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年吉林省長(zhǎng)春外國語學(xué)校高一(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知y=f(x)為奇函數(shù),當(dāng)x≥0時(shí)f(x)=x(1-x),則當(dāng)x≤0時(shí),f(x)=( )
A.x(x-1)
B.-x(x+1)
C.x(x+1)
D.-x(x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第1章 集合與函數(shù)概念》2010年單元測(cè)試卷2(大綱版)(解析版) 題型:填空題

已知y=f(x)為奇函數(shù),當(dāng)x≥0時(shí)f(x)=x(1-x),則當(dāng)x≤0時(shí),則f(x)=   

查看答案和解析>>

同步練習(xí)冊(cè)答案