(Ⅰ)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);
(Ⅱ)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);
(Ⅲ)求證:ln22+ln32+ln42+…+ln(n+1)2>(n∈N*).
(Ⅰ)證明:∵g′(x)=,又xf′(x)>f(x)在x>0時(shí)恒成立,
∴g′(x)>0,∴g(x)=在(0,+∞)上是增函數(shù).
(Ⅱ)證明:當(dāng)x1>0,x2>0時(shí),有x1+x2>x1,x1+x2>x2,
由(Ⅰ)得g(x1+x2)>g(x1),g(x1+x2)>g(x2),
即:>,>.
∴x1f(x1+x2)>(x1+x2)f(x1),
x2f(x1+x2)>(x1+x2)f(x2),
∴(x1+x2)f(x1+x2)>(x1+x2)(f(x1)+f(x2)),
∴f(x1+x2)>f(x1)+f(x2).
(Ⅲ)用數(shù)學(xué)歸納法證明
(ⅰ)當(dāng)n=1時(shí),左==ln4,
右==·,由于ln4>1>,
∴ln4>·.即原不等式成立.
(ⅱ)假設(shè)n=k時(shí),命題成立.即:
+++…+>,
那么:+++…+>
2+
=
=·≥.
這就是說(shuō),當(dāng)n=k+1時(shí),命題也成立.
由(ⅰ)(ⅱ)可知,對(duì)一切n∈N*,都有
+++…+>成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);
(2)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);
(3)已知不等式ln(1+x)<x在x>-1且x≠0時(shí)恒成立,求證:ln22+ln32+ln42+…+)2ln(n+1)2>(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(Ⅰ)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);
(Ⅱ)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0時(shí)恒成立,求證:ln22+ln32+ln42+…+ln(n+1)2>(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(Ⅰ)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);
(Ⅱ)求證:當(dāng)x1>0,x2>0時(shí),有f(x1+x2)>f(x1)+f(x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0時(shí)恒成立,求證:ln22+ln32+ln42+…+ln(n+1)2>(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求證:函數(shù)g(x)=在(0,+∞)上單調(diào)遞增;
(2)求證:當(dāng)x1>0,x2>0時(shí),f(x1+x2)>f(x1)+f(x2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com