【題目】已知函數(shù),.

(1)處取得極值,求的值;

(2)設(shè),試討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),若存在正實(shí)數(shù)滿足,求證:.

【答案】(1)(2)見(jiàn)解析(3)見(jiàn)解析

【解析】

(Ⅰ)由題意,求得函數(shù)的導(dǎo)數(shù),根據(jù),即可求解;

(Ⅱ)由題意,得 ,求得函數(shù)的導(dǎo)數(shù),分類討論,即可求解函數(shù)的單調(diào)區(qū)間;

(Ⅲ)代入,求出,令,,根據(jù)函數(shù)的單調(diào)性,即可作出證明.

1)因?yàn)?/span>,所以,

因?yàn)?/span>處取得極值,

所以,解得

驗(yàn)證:當(dāng)時(shí),處取得極大值.

2)解:因?yàn)?/span>

所以

①若,則當(dāng)時(shí),,所以函數(shù)上單調(diào)遞增;

當(dāng)時(shí),,函數(shù)上單調(diào)遞減.

②若,,

當(dāng)時(shí),易得函數(shù)上單調(diào)遞增,

上單調(diào)遞減;

當(dāng)時(shí),恒成立,所以函數(shù)上單調(diào)遞增;

當(dāng)時(shí),易得函數(shù)上單調(diào)遞增,

上單調(diào)遞減.

3)證明:當(dāng)時(shí),

因?yàn)?/span>,

所以

,

所以

,

,

當(dāng)時(shí),,所以函數(shù)上單調(diào)遞減;

當(dāng)時(shí),,所以函數(shù)上單調(diào)遞增.

所以函數(shù)時(shí),取得最小值,最小值為

所以,

,所以

因?yàn)?/span>為正實(shí)數(shù),所以

當(dāng)時(shí),,此時(shí)不存在滿足條件,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O與直線相切.

1)求圓O的方程;

2)若過(guò)點(diǎn)的直線l被圓O所截得的弦長(zhǎng)為4,求直線l的方程;

3)若過(guò)點(diǎn)作兩條斜率分別為,的直線交圓OB、C兩點(diǎn),且,求證:直線BC恒過(guò)定點(diǎn).并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織了一次新高考質(zhì)量測(cè)評(píng),在成績(jī)統(tǒng)計(jì)分析中,某班的數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

5

6

8

6

2

3

3

5

6

8

9

7

1

2

2

3

4

5

6

7

8

9

8

9

5

8

1)求該班數(shù)學(xué)成績(jī)?cè)?/span>的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計(jì)該班這次測(cè)評(píng)的數(shù)學(xué)平均分;

3)若規(guī)定90分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在80分及其以上的試卷中任取2份分析學(xué)生得分情況,求在抽取的2份試卷中至少有1份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正項(xiàng)等差數(shù)列的前n項(xiàng)和為,已知成等比數(shù)列

1)求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前n項(xiàng)和;

3)設(shè)數(shù)列滿足求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCa=7,b=8,cosB= –

A;

AC邊上的高

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的最值;

(2)若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓C: (a>b>0)的離心率為,F(xiàn)為橢圓C的右焦點(diǎn).A(-a,0),|AF|=3.

(I)求橢圓C的方程;

(II)設(shè)O為原點(diǎn),P為橢圓上一點(diǎn),AP的中點(diǎn)為M.直線OM與直線x=4交于點(diǎn)D,過(guò)O且平行于AP的直線與直線x=4交于點(diǎn)E.求證:∠ODF=∠OEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (x>0),設(shè)fn(x)為fn-1(x)的導(dǎo)數(shù),n∈N*.

(1)求的值;

(2)證明:對(duì)任意的n∈N*,等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)解答一道解析幾何題:已知直線lx軸的交點(diǎn)為A,圓O經(jīng)過(guò)點(diǎn)A

(Ⅰ)求r的值;

(Ⅱ)若點(diǎn)B為圓O上一點(diǎn),且直線AB垂直于直線l,求

該同學(xué)解答過(guò)程如下:

解答:(Ⅰ)令,即,解得,所以點(diǎn)A的坐標(biāo)為

因?yàn)閳AO經(jīng)過(guò)點(diǎn)A,所以

(Ⅱ)因?yàn)?/span>.所以直線AB的斜率為

所以直線AB的方程為,即

代入消去y整理得,

解得,.當(dāng)時(shí),.所以點(diǎn)B的坐標(biāo)為

所以

指出上述解答過(guò)程中的錯(cuò)誤之處,并寫(xiě)出正確的解答過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案