【題目】某工廠有工人1000名,其中250名工人參加過(guò)短期培訓(xùn)(稱為A類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù))
(1)A類工人中和B類工人各抽查多少工人?
(2)從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2:
表1:
生產(chǎn)能力分組 | |||||
人數(shù) | 4 | 8 | x | 5 | 3 |
表2:
生產(chǎn)能力分組 | ||||
人數(shù) | 6 | y | 36 | 18 |
①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個(gè)體間的差異程度與B類工人中個(gè)體間的差異程度哪個(gè)更。浚ú挥糜(jì)算,可通過(guò)觀察直方圖直接回答結(jié)論)
②分別估計(jì)A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計(jì)該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)
圖1A類工人生產(chǎn)能力的頻率分布直方圖 圖2B類工人生產(chǎn)能力的頻率分布直方圖
【答案】(1)25,75(2)①5,15,直方圖見(jiàn)解析,B類②123,133.8,131.1
【解析】
(1)先計(jì)算抽樣比為,進(jìn)而可得各層抽取人數(shù)(2)①類、類工人人數(shù)之比為,按此比例確定兩類工人需抽取的人數(shù),再算出和即可.畫出頻率分布直方圖,從直方圖可以判斷:類工人中個(gè)體間的差異程度更小 ②取每個(gè)小矩形的橫坐標(biāo)的中點(diǎn)乘以對(duì)應(yīng)矩形的面積相加即得平均數(shù).
(1)由已知可得:抽樣比,
故類工人中應(yīng)抽。人,
類工人中應(yīng)抽。人,
(2)①由題意知,得,
,得.
滿足條件的頻率分布直方圖如下所示:
從直方圖可以判斷:類工人中個(gè)體間的差異程度更。
②,
類工人生產(chǎn)能力的平均數(shù),類工人生產(chǎn)能力的平均數(shù)以及全工廠工人生產(chǎn)能力的平均數(shù)的估計(jì)值分別為123,133.8和131.1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,E,F,G分別為,,AB的中點(diǎn).
求證:平面平面BEF;
若平面,求證:H為BC的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),國(guó)資委.黨委高度重視扶貧開(kāi)發(fā)工作,堅(jiān)決貫徹落實(shí)中央扶貧工作重大決策部署,在各個(gè)貧困縣全力推進(jìn)定點(diǎn)扶貧各項(xiàng)工作,取得了積極成效,某貧困縣為了響應(yīng)國(guó)家精準(zhǔn)扶貧的號(hào)召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時(shí)間的關(guān)系如下表所示:
土地使用面積(單位:畝) | |||||
管理時(shí)間(單位:月) |
并調(diào)查了某村名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | ||
女性村民 |
求出相關(guān)系數(shù)的大小,并判斷管理時(shí)間與土地使用面積是否線性相關(guān)?
若以該村的村民的性別與參與管理意愿的情況估計(jì)貧困縣的情況,則從該貧困縣中任取人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望.
參考公式:,參考數(shù)據(jù):,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1) 已知函數(shù),若,則_____.
(2)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=2,a11-a4=7,則S13=________.
(3)若命題“x∈R,使得x2+(a﹣1)x+1<0”是真命題,則實(shí)數(shù)a的取值范圍是______.
(4)在△ABC中,tanA+tanB+=tanA·tanB,且sinA·cosA=,則此三角形為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)函數(shù)與直線相切,設(shè)函數(shù)其中a、c∈R,e是自然對(duì)數(shù)的底數(shù).
(1)討論h(x)的單調(diào)性;
(2)h(x)在區(qū)間內(nèi)有兩個(gè)極值點(diǎn).
①求a的取值范圍;
②設(shè)函數(shù)h(x)的極大值和極小值的差為M,求實(shí)數(shù)M的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中有四個(gè)小球,分別寫有“五、校、聯(lián)、考”四個(gè)字,從中任取一個(gè)小球,有放回抽取,直到取到“五”“校”二字就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率:利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“五、校、聯(lián)、考”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下16組隨機(jī)數(shù),由此可以估計(jì),恰好第三次就停止的概率為______
232 321 230 023 123 021 132 220
231 130 133 231 331 320 120 233
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com