隨機抽取某中學甲乙兩班各10名同學,測量他們的身高(單位:)獲得身高數(shù)據(jù)的莖葉圖如下:
 
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高。
(2)計算甲班的樣本方差。
(3)現(xiàn)從甲乙兩班同學中各隨機抽取一名身高不低于的同學,求至少有一名身高大于的同學被抽中的概率。


(1)乙班的平均身高較高
(2)
(3)

解析試題分析:解:(1)


∴乙班的平均身高較高。
(2)

(3)從甲乙兩班同學中隨機抽取兩名身高不低于的同學
共有9種不同的取法:
,,,,,
 ,,,
表示隨機事件“抽到至少有一名身高大于的同學”,則中的基本事件有5個,
 ,,,
故,所求概率為,
考點:平均值方差和古典概型
點評:主要是考查了莖葉圖以及數(shù)據(jù)的平均值和方差以及古典概型的概率的運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某車間共有名工人,隨機抽取名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(Ⅰ) 根據(jù)莖葉圖計算樣本均值;
(Ⅱ) 日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;
(Ⅲ) 從該車間名工人中,任取人,求恰有名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢。
(1)摸出的3個球為白球的概率是多少?  
(2)摸出的3個球為2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.已知盒子中有4個紅球,2個白球,從中一次抓三個球
(1)求沒有抓到白球的概率;
(2)記抓到球中的紅球數(shù)為X ,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在盒子里有大小相同,僅顏色不同的乒乓球共10個,其中紅球5個,白球3個,藍球2個。現(xiàn)從盒子中每次任意取出一個球,若取出的是藍球則結束,若取出的不是藍球則將其放回箱中,并繼續(xù)從箱中任意取出一個球,但取球次數(shù)最多不超過3次。求:
(1)取兩次就結束的概率;
(2)正好取到2個白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在進行一項擲骰子放球游戲中,規(guī)定:若擲出1點,甲盒中放一球;
若擲出2點或3點,乙盒中放一球;若擲出4點或5點或6點,丙盒中放一球,前后共擲3
次,設分別表示甲,乙,丙3個盒中的球數(shù).
(1)求依次成公差大于0的等差數(shù)列的概率;
(2)記,求隨機變量的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

高三年級有3名男生和1名女生為了報某所大學,事先進行了多方詳細咨詢,并根據(jù)自己的高考成績情況,最終估計這3名男生報此所大學的概率都是,這1名女生報此所大學的概率是.且這4人報此所大學互不影響。
(Ⅰ)求上述4名學生中報這所大學的人數(shù)中男生和女生人數(shù)相等的概率;
(Ⅱ)在報考某所大學的上述4名學生中,記為報這所大學的男生和女生人數(shù)的和,試求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

袋子A、B中均裝有若干個大小相同的紅球和白球,從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為p.
(1)  從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止。
①求恰好摸5次停止的概率;
②記5次之內(含5次)摸到紅球的次數(shù)為,求隨機變量的分布列及數(shù)學期望。
(2)若A、B兩個袋子中的球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率是,求p的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩隊在進行一場五局三勝制的排球比賽中,規(guī)定先贏三局的隊獲勝,并且比賽就此結束,現(xiàn)已知甲、乙兩隊每比賽一局,甲隊獲勝的概率為,乙隊獲勝的概率為,且每局比賽的勝負是相互獨立的,問:
(1)甲隊以獲勝的概率是多少?
(2)乙隊獲勝的概率是多少?

查看答案和解析>>

同步練習冊答案