【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }是等比數(shù)列,并求{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}滿(mǎn)足bn=(3n﹣1) an , 數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 若不等式(﹣1)nλ<Tn+ 對(duì)一切n∈N*恒成立,求λ的取值范圍.
【答案】
(1)證明:由數(shù)列{an}中,a1=1,an+1= (n∈N*),可得 =1+ .
∴ ,
∴{ }是首項(xiàng)為 ,公比為3的等比數(shù)列,
∴ ,化為
(2)解:由(1)可知: = ,
Tn= +…+ .
…+ + ,
兩式相減得 ﹣ = = .
∴ .
∴(﹣1)nλ< + =4﹣ .
若n為偶數(shù),則 ,∴λ<3.
若n為奇數(shù),則 ,∴﹣λ<2,解得λ>﹣2.
綜上可得﹣2<λ<3.
【解析】(1)由數(shù)列{an}中,a1=1,an+1= (n∈N*),可得 =1+ .變形為 ,利用等比數(shù)列的通項(xiàng)公式即可得出.(2)由(1)可知:bn , 利用“錯(cuò)位相減法”即可得出Tn , 利用不等式(﹣1) ,通過(guò)對(duì)n分為偶數(shù)與奇數(shù)討論即可.
【考點(diǎn)精析】利用等比關(guān)系的確定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知等比數(shù)列可以通過(guò)定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個(gè)不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為提升學(xué)生的英語(yǔ)學(xué)習(xí)能力,進(jìn)行了主題分別為“聽(tīng)”、“說(shuō)”、“讀”、“寫(xiě)”四場(chǎng)競(jìng)賽.規(guī)定:每場(chǎng)競(jìng)賽的前三名得分分別為, , (,且, , ),選手的最終得分為各場(chǎng)得分之和.最終甲、乙、丙三人包攬了每場(chǎng)競(jìng)賽的前三名,在四場(chǎng)競(jìng)賽中,已知甲最終分為分,乙最終得分為分,丙最終得分為分,且乙在“聽(tīng)”這場(chǎng)競(jìng)賽中獲得了第一名,則“聽(tīng)”這場(chǎng)競(jìng)賽的第三名是( )
A. 甲 B. 乙 C. 丙 D. 甲和丙都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:x+2y﹣4=0與坐標(biāo)軸交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則經(jīng)過(guò)O、A、B三點(diǎn)的圓的標(biāo)準(zhǔn)方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB的長(zhǎng)為2,動(dòng)點(diǎn)C滿(mǎn)足 (μ為常數(shù),μ>﹣1),且點(diǎn)C始終不在以點(diǎn)B為圓心 為半徑的圓內(nèi),則μ的范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}是首項(xiàng)為正數(shù)的等比數(shù)列,公比為q,則“q<0”是“對(duì)任意的正整數(shù)n,a2n﹣1+a2n<0”的條件.(填“充要條件、充分不必要條件、必要不充分條件、即不充分也不必要條件”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專(zhuān)業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒(méi)有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過(guò)7人”。根據(jù)過(guò)去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是 ( )
A. 甲地:總體均值為3,中位數(shù)為4
B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3
D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, 為兩條不同的直線, , 為兩個(gè)不同的平面,對(duì)于下列四個(gè)命題:
①, , , ②,
③, , ④,
其中正確命題的個(gè)數(shù)有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列命題:
①函數(shù)的圖象與的圖象恰有個(gè)公共點(diǎn);
②函數(shù)有個(gè)零點(diǎn);
③若函數(shù)與的圖像關(guān)于直線對(duì)稱(chēng),則函數(shù)與的圖象也關(guān)于直線對(duì)稱(chēng);
④函數(shù)的圖象是由函數(shù)的圖象水平向右平移一個(gè)單位后,將所得圖象在軸右側(cè)部分沿軸翻折到軸左側(cè)替代軸左側(cè)部分圖象,并保留右側(cè)部分而得到的.其中錯(cuò)誤的命題有___________.(填寫(xiě)所有錯(cuò)誤的命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com