已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1)且當(dāng)x∈[-1,1]時,f(x)=x2,則y=f(x)與的圖象的交點(diǎn)個數(shù)為(     )

A. 3      B. 4      C. 5      D. 6

 

【答案】

C

【解析】

試題分析:由函數(shù)滿足f(x+1)=f(x-1)可得函數(shù)是周期函數(shù)周期為2. 當(dāng)x∈[-1,1]時,f(x)=x2.當(dāng).所以y=f(x)與的圖象在x>1范圍有4個交點(diǎn).在0<x<1范圍有一個交點(diǎn).所以共有5個交點(diǎn).故選C.

考點(diǎn):1.函數(shù)的周期性.2.分段函數(shù)的知識.3.含絕對值的函數(shù)圖像.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x+
1
2
)
為奇函數(shù),設(shè)g(x)=f(x)+1,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=(  )
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的最大值;
(3)比較20092010與20102009的大小,并說明為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
f(x)
ex
(x∈R)
滿足f′(x)>f(x),則f(1)與ef(0)的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實(shí)數(shù)a的取值范圍,使命題p,q中有且只有一個為真命題.

查看答案和解析>>

同步練習(xí)冊答案