已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),當(dāng)x∈(-∞,-2)∪(0,+∞)時(shí),f(x)>0,當(dāng)x∈(-2,0)時(shí),f(x)<0,且對(duì)任意x∈R,不等式f(x)≥(a-1)x-1恒成立.
(I)求函數(shù)f(x)的解析式;
(II)設(shè)函數(shù)F(x)=tf(x)-x-3,其中t≥0,求F(x)在時(shí)的最大值H(t);
(III)在(II)的條件下,若關(guān)于的函數(shù)y=log2[p-H(t)]的圖象與直線y=0無(wú)公共點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】分析:(I)由已知得a>0,且-2和0為方程ax2+bx+c=0的兩根,故可設(shè)f(x)=ax(x+2),利用f(x)≥(a-1)x-1恒成立,求出a的值.
(II)由題意,分情況討論F(x)在時(shí)的最大值H(t).當(dāng)t=0時(shí),F(xiàn)(x)是單調(diào)函數(shù),可求最大值;當(dāng)t>0時(shí),利用二次函數(shù)求最值的方法,分類討論;
(III)由題意,只需要[p-H(t)]>0,且p-H(t)=1無(wú)解,即[p-H(t)]max>0,且1不在[p-H(t)]值域內(nèi),故問(wèn)題得解.
解答:解:(I)由已知得a>0,且-2和0為方程ax2+bx+c=0的兩根,∴可設(shè)f(x)=ax(x+2),又由f(x)≥(a-1)x-1恒成立得(a-1)2≤0,∴a=1,∴f(x)=x2+2x
(II)F(x)=tf(x)-x-3=tx2+(2t-1)x-3(t≥0),以下分情況討論F(x)在時(shí)的最大值H(t)
(1)當(dāng)t=0時(shí),F(xiàn)(x)=-x-3在時(shí)單調(diào)遞減,;
(2)當(dāng)t>0時(shí),F(xiàn)(x)圖象的對(duì)稱軸方程為.∵,∴只需比較的大小
,F(xiàn)(x)max=8t-5;
,
綜上可得
(III)由題意,只需要[p-H(t)]>0,且p-H(t)=1無(wú)解,即[p-H(t)]max>0,且1不在[p-H(t)]值域內(nèi)
由(II)可知H(t)的最小值為,即-H(t)的最大值為,∴,∴
點(diǎn)評(píng):本題考查代入法求函數(shù)的解析式,考查了二次函數(shù)在定區(qū)間上的最值問(wèn)題,考查恒成立問(wèn)題的處理,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問(wèn):是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過(guò)原點(diǎn),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案