設(shè)命題p:方程x2-mx+
1
4
=0
沒(méi)有實(shí)數(shù)根.命題q:方程
x2
m-2
+
y2
m
=1
表示的曲線(xiàn)是雙曲線(xiàn).若命題p∧q為真命題,求實(shí)數(shù)m的取值范圍.
∵方程x2-mx+
1
4
=0
沒(méi)有實(shí)數(shù)根,
則△=m2-1<0?-1<m<1,
∴命題p為真時(shí),-1<m<1;
∵方程
x2
m-2
+
y2
m
=1
表示的曲線(xiàn)是雙曲線(xiàn),則(m-2)m<0⇒0<m<2
∴命題q為真時(shí),0<m<2,
若命題p∧q為真命題,
則p真且q真?
-1<m<1
0<m<2
?0<m<1
,
故m的取值范圍是(0,1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)都是非零向量,那么命題“共線(xiàn)”是命題“”的(     )
A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知手>0,設(shè)p:函數(shù)y=手w在R上單調(diào)遞減;g:不等式w+|w-2手|>1的解集為R.w果p∨g為真,p∧g為假,求實(shí)數(shù)手的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知命題p:?x∈[2,3],使得不等式x2-2x+1-m≥0成立;命題q:方程mx2+(m-5)y2=1表示雙曲線(xiàn).若p或q為真命題,p且q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知命題p:不等式|x|≥m的解集是R,命題q:f(x)=
2-m
x
在區(qū)間(0,+∞)上是減函數(shù),若命題“p∨q”為真,則實(shí)數(shù)m的范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩個(gè)命題p:直線(xiàn)y=mx+3與圓(x-3)2+(y-2)2=4相交的弦長(zhǎng)大于2
3
;q:P(
1
2
,-1),Q(2,1)均在圓x2+y2+mx+y=0內(nèi).
(1)當(dāng)p為真時(shí),求實(shí)數(shù)m的取值范圍;
(2)若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知命題p:“存在實(shí)數(shù)a,使直線(xiàn)x+ay-2=0與圓x2+y2=1有公共點(diǎn)”,命題q:“存在實(shí)數(shù)a,使點(diǎn)(a,1)在橢圓
x2
8
+
y2
2
=1
內(nèi)部”,若命題“p且?q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知a∈R,設(shè)p:函數(shù)f(x)=x2+(a-1)x是區(qū)間(1,+∞)上的增函數(shù),q:方程x2-ay2=1表示雙曲線(xiàn).
(1)若p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若“p且q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知命題p:
x+2
x-3
≥0
,q:x∈Z,若“p且q”與“非q”同時(shí)為假命題,求x的取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案