【題目】在平面直角坐標(biāo)系 中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程是 ,圓 的極坐標(biāo)方程是
(1)求 交點(diǎn)的極坐標(biāo);
(2)設(shè) 的圓心, 交點(diǎn)連線的中點(diǎn),已知直線 的參數(shù)方程是 為參數(shù)),求 的值.

【答案】
(1)解: 代入 ,得 .所以 ,取 , .再由 ,或 .所以 交點(diǎn)的極坐標(biāo)是 ,或

(2)解:參數(shù)方程化為普通方程得 .由(Ⅰ)得 , 的直角坐標(biāo)分別是 , ,代入解得
【解析】(1)把極坐標(biāo)坐標(biāo)代入到直線的極坐標(biāo)方程中整理得到 cos θ = 0 或 tan θ = 1,進(jìn)而得出 θ的大小代入到圓C的極坐標(biāo)方程求出 ρ 的值,進(jìn)而求出交點(diǎn)的極坐標(biāo)。(2)由題意利用極坐標(biāo)和直角坐標(biāo)的互化關(guān)系得到直線的一般方程由(1)的結(jié)論求出點(diǎn)P、Q 的坐標(biāo)代入直線的方程求出結(jié)果即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計算:(1) ;

(2) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,且經(jīng)過點(diǎn)M(﹣3,﹣1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:x﹣y﹣2=0與橢圓C交于A,B兩點(diǎn),點(diǎn)P為橢圓C上一動點(diǎn),當(dāng)△PAB的面積最大時,求點(diǎn)P的坐標(biāo)及△PAB的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若將函數(shù)y=2sin(3x+φ)的圖象向右平移 個單位后得到的圖象關(guān)于點(diǎn)( )對稱,則|φ|的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所2017年10月16日正式發(fā)布一種水稻新種質(zhì),株高可達(dá)2.2米以上,具有高產(chǎn)、抗倒伏、抗病蟲害、酎淹澇等特點(diǎn),被認(rèn)為開啟了水稻研制的一扇新門.以下是兩組實(shí)驗(yàn)田中分別抽取的6株巨型稻的株高,數(shù)據(jù)如下(單位:米).

: 1.7 1.8 1.9 2.2 2.4 2.5

: 1.8 1.9 2.0 2.0 2.4 2.5

(1)繪制兩組數(shù)據(jù)的莖葉圖,并求出組數(shù)據(jù)的中位數(shù)和組數(shù)據(jù)的方差;

(2)從組樣本中隨機(jī)抽取2株,請列出所有的基本事件,并求至少有一株超過組株高平均值的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2-6x+8<0},
(1)若xAxB的充分條件,求a的取值范圍.
(2)若AB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列 滿足 是數(shù)列 的前 項(xiàng)和.
(1)求數(shù)列 的通項(xiàng)公式 ;
(2)令 ,求數(shù)列 的前 項(xiàng)和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列程序運(yùn)行的結(jié)果是__________


n=15

S=0

i=1

WHILE i<=n

S=S+i

i=i+2

WEND

PRINT S

END

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABCA1A=,AB=,AC=2,A1C1=1,.

(1)證明:BCA1D

(2)求二面角A-CC1-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案