【題目】已知函數(shù)f(x)=3sin(ωx+ 的部分圖象如圖所示,A,B兩點之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長度后所得函數(shù)圖象關于y軸對稱,則t的最小值為(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:由題設圖象知,周期 T=|AB|,解得:T=20, ∴ω= =
可得f(x)=3sin( +
∵f(2)=0,
∴sin( +)=0,
Φ
=
故得f(x)=3sin(
將函數(shù)f(x)的圖象向右平移t(t>0)的單位可得:y=3sin[ ]=3in( ),
函數(shù)圖象關于y軸對稱,
,
整理得:﹣t=7+10k,
∵t>0,
∴當k=﹣1時,t的最小值為3.
故選C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù)f(x)=sin (2x﹣ )(x∈R),給出下列三個結論: ①對于任意的x∈R,都有f(x)=cos (2x﹣ );
②對于任意的x∈in R,都有f(x+ )=f(x﹣ );
③對于任意的x∈R,都有f( ﹣x)=f( +x).
其中,全部正確結論的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足:集合中至少存在三個不同的數(shù)構成等比數(shù)列,則稱函數(shù)是等比源函數(shù)

)判斷下列函數(shù):①;;中,哪些是等比源函數(shù)?(不需證明)

)判斷函數(shù)是否為等比源函數(shù),并證明你的結論.

)證明: , ,函數(shù)都是等比源函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=lnx+ ,m∈R,若對任意b>a>0, <1恒成立,則m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市隨機抽取一年(365天)內100天的空氣質量指數(shù)API的監(jiān)測數(shù)據(jù),結果統(tǒng)計如表:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

>300

空氣質量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15


(1)若某企業(yè)每天由空氣污染造成的經(jīng)濟損失S(單位:元)與空氣質量指數(shù)API(記為ω)的關系式為: S= ,試估計在本年內隨機抽取一天,該天經(jīng)濟損失S大于200元且不超過600元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認為該市本年空氣重度污染與供暖有關? 附:

P(K2≥k0

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

k2=

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市某礦山企業(yè)生產某產品的年固定成本為萬元,每生產千件該產品需另投入萬元,設該企業(yè)年內共生產此種產品千件,并且全部銷售完,每千件的銷售收入為萬元,且

(Ⅰ)寫出年利潤(萬元)關于產品年產量(千件)的函數(shù)關系式;

(Ⅱ)問:年產量為多少千件時,該企業(yè)生產此產品所獲年利潤最大?

注:年利潤=年銷售收入-年總成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三某班的一次測試成績的頻率分布表以及頻率分布直方圖中的部分數(shù)據(jù)如下,請根據(jù)此解答如下問題:

(1)求班級的總人數(shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補充完整;
(3)若要從分數(shù)在[80,100)之間的試卷中任取兩份分析學生失分情況,在抽取的試卷中,求至少有一份分數(shù)在[90,100)之間的概率.

分組

頻數(shù)

頻率

[50,60)

0.08

[60,70)

7

[70,80)

10

[80,90)

[90,100)

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)若不等式上恒成立,求實數(shù)a的取值范圍;

(Ⅲ)若,求證不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙十一網(wǎng)購狂歡,快遞業(yè)務量猛增.甲、乙兩位快遞員日到日每天送件數(shù)量的莖葉圖如圖所示.

)根據(jù)莖葉圖判斷哪個快遞員的平均送件數(shù)量較多(寫出結論即可);

)求甲送件數(shù)量的平均數(shù);

)從乙送件數(shù)量中隨機抽取個,求至少有一個送件數(shù)量超過甲的平均送件數(shù)量的概率.

查看答案和解析>>

同步練習冊答案