【題目】已知函數(shù)f(x)=-,若x∈R,f(x)滿足f(-x)=-f(x).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)(x∈R)的單調(diào)性,并說明理由;
(3)若對任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,求k的取值范圍.
【答案】(1)1;(2)
【解析】
(1)根據(jù)f(-x)=-f(x)代入求得a的值; (2)f(x)是定義域R上的單調(diào)減函數(shù),利用定義證明即可; (3)根據(jù)題意把不等式化為t2-4t>k,求出f(t)=t2-4t的最小值,即可得出k的取值范圍.
(Ⅰ)函數(shù)f(x)=-,x∈R,且f(-x)=-f(x),
∴-=-+,
∴a=+=+=1;
(Ⅱ)f(x)=-是定義域R上的單調(diào)減函數(shù),證明如下:
任取x1、x2∈R,且x1<x2,
則f(x1)-f(x2)=(-)-(-)=-=,
由(+1)(+1)>0,當x1<x2時,<,
∴->0,∴f(x1)>f(x2),
∴f(x)是定義域R上的單調(diào)減函數(shù);
(Ⅲ)對任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,
則f(t2-4t)<-f(-k)=f(k),
根據(jù)f(x)是定義域R上的單調(diào)減函數(shù),得t2-4t>k,
設(shè)f(t)=t2-4t,t∈R,則f(t)=(t-2)2-4≥-4,
∴k的取值范圍是k<-4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O是坐標原點,橢圓C:x2+3y2=6的左右焦點分別為F1 , F2 , 且P,Q是橢圓C上不同的兩點, (Ⅰ)若直線PQ過橢圓C的右焦點F2 , 且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
(Ⅱ)若P,Q兩點使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,底面ABCD,點E在棱PB上.
求證:平面平面PDB;
當,且E為PB的中點時,求AE與平面PDB所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若對任意的m,,,都有.
若,求a的取值范圍.
若不等式對任意和都恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2-4ax+1+b(a>0)的定義域為[2,3],值域為[1,4];設(shè)g(x)=.
(1)求a,b的值;
(2)若不等式g(2x)-k2x≥0在x∈[1,2]上恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()
(1)若,用“五點法”在給定的坐標系中,畫出函數(shù)在[0,π]上的圖象.
(2)若偶函數(shù),求
(3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>4倍,縱坐標不變,得到函數(shù)的圖象,求在的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣2bx+a(a,b∈R)
(1)若a從集合{0,1,2,3}中任取一個元素,b從集合{0,1,2,3}中任取一個元素,求方程f(x)=0恰有兩個不相等實根的概率;
(2)若b從區(qū)間[0,2]中任取一個數(shù),a從區(qū)間[0,3]中任取一個數(shù),求方程f(x)=0沒有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有8名馬拉松比賽志愿者,其中志愿者,,通曉日語,,,通曉俄語,,通曉英語,從中選出通曉日語、俄語和英語的志愿者各1名,組成一個小組.
列出基本事件;
求被選中的概率;
求和不全被選中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com