【題目】為迎接2022年北京冬季奧運會, 某校開設了冰球選修課,12名學生被分成甲、乙兩組進行訓練.他們的身高(單位:cm)如下圖所示:

設兩組隊員身高平均數(shù)依次為,,方差依次為,,則下列關系式中完全正確的是( )

A. =, =B. <,>

C. <,=D. <,<

【答案】C

【解析】

由莖葉圖,分別求出兩組數(shù)據(jù)的平均數(shù)和方差,由此能求出結果.

解:由莖葉圖,得:

174+175+176+177+178+179)=176.5

[174176.52+175176.52+176176.52+177176.52+178176.52+179176.52],

176+177+178+179+180+181)=178.5,

[176178.52+177178.52+178178.52+179178.52+180178.52+181178.52],.

<,=

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且2cosAcosC(tanAtanC﹣1)=1.
(Ⅰ)求B的大;
(Ⅱ)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)滿足

(Ⅰ)當時,解不等式;

(Ⅱ)若關于x的方程的解集中有且只有一個元素,求a的值;

(Ⅲ)設,若對,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設某士兵遠程射擊一個易爆目標,射擊一次擊中目標的概率為,三次射中目標或連續(xù)兩次射中目標,該目標爆炸,停止射擊,否則就一直獨立地射擊至子彈用完現(xiàn)有5發(fā)子彈,設耗用子彈數(shù)為隨機變量X.

(1)若該士兵射擊兩次,求至少射中一次目標的概率;

(2)求隨機變量X的概率分布與數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為利于分層教學,某學校根據(jù)學生的情況分成了A,B,C三類,經(jīng)過一段時間的學習后在三類學生中分別隨機抽取了1個學生的5次考試成緞,其統(tǒng)計表如下:

A類

第x次

1

2

3

4

4

分數(shù)y(滿足150)

145

83

95

72

110

,;

B類

第x次

1

2

3

4

4

分數(shù)y(滿足150)

85

93

90

76

101

,;

C類

第x次

1

2

3

4

4

分數(shù)y(滿足150)

85

92

101

100

112

;

(1)經(jīng)計算己知A,B的相關系數(shù)分別為,.,請計算出C學生的的相關系數(shù),并通過數(shù)據(jù)的分析回答抽到的哪類學生學習成績最穩(wěn)定;(結果保留兩位有效數(shù)字,越大認為成績越穩(wěn)定)

(2)利用(1)中成績最穩(wěn)定的學生的樣本數(shù)據(jù),已知線性回歸直線方程為,利用線性回歸直線方程預測該生第十次的成績.

附相關系數(shù),線性回歸直線方程,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知表1是某年部分日期的天安門廣場升旗時刻表.

表1:某年部分日期的天安門廣場升旗時刻表

將表1中的升旗時刻化為分數(shù)后作為樣本數(shù)據(jù)(如:可化為).

(Ⅰ)請補充完成下面的頻率分布表及頻率分布直方圖;

分組

頻數(shù)

頻率

4:00—4:59

3

5:00—5:59

0.25

6:00—6:59

7:00—7:59

5

合計

20

(Ⅱ)若甲學校從上表日期中隨機選擇一天觀看升旗.試估計甲學校觀看升旗的時刻早于6:00的概率;

(Ⅲ)若甲,乙兩個學校各自從表1中五月、六月的日期中隨機選擇一天觀看升旗, 求兩校觀看升旗的時刻均不早于5:00的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面幾何中,通常將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.最小覆蓋圓滿足以下性質(zhì):①線段的最小覆蓋圓就是以為直徑的圓;②銳角的最小覆蓋圓就是其外接圓.已知曲線,,,為曲線上不同的四點.

(Ⅰ)求實數(shù)的值及的最小覆蓋圓的方程;

(Ⅱ)求四邊形的最小覆蓋圓的方程;

(Ⅲ)求曲線的最小覆蓋圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體中,平面平面,,,分別為的中點.

(1)證明:平面平面;

(2)求三棱錐的體積;

(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側面為菱形,的中點為,且平面

(1)證明:;

(2)若,,試畫出二面角的平面角,并求它的余弦值.

查看答案和解析>>

同步練習冊答案