【題目】在直三棱柱中,為正三角形,點(diǎn)在棱上,且,點(diǎn)、分別為棱、的中點(diǎn).
(1)證明:平面;
(2)若,求直線(xiàn)與平面所成的角的正弦值.
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)連接,連接分別交、于點(diǎn)、,再連接,證明出,結(jié)合條件可得出,然后利用直線(xiàn)與平面平行的判定定理可證明出平面;
(2)取的中點(diǎn),連接、,證明出平面,且,設(shè)等邊三角形的邊長(zhǎng)為,并設(shè),以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線(xiàn)分別為軸、軸、軸建立空間直角坐標(biāo)系,由得出的值,并計(jì)算出平面的法向量,利用空間向量法求出直線(xiàn)與平面所成的角的正弦值.
(1)如下圖所示,連接,連接分別交、于點(diǎn)、,再連接,
、分別為、的中點(diǎn),則,,則為的中點(diǎn),
在直三棱柱中,,則四邊形為平行四邊形,
,為的中點(diǎn),,,
,,
平面,平面,平面;
(2)取的中點(diǎn),連接、,
四邊形為平行四邊形,則,
、分別為、的中點(diǎn),,所以,四邊形是平行四邊形,
,在直三棱柱中,平面,平面,
是等邊三角形,且點(diǎn)是的中點(diǎn),,
以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線(xiàn)分別為軸、軸、軸建立空間直角坐標(biāo)系,
設(shè)的邊長(zhǎng)為,,則點(diǎn)、、、、、、,,,
,則,得,
,,.
設(shè)平面的法向量為,由,得.
令,可得,,所以,平面的一個(gè)法向量為,
,
因此,直線(xiàn)與平面所成的角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線(xiàn)A1C 與平面BB1C1C所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形中,,,點(diǎn)為線(xiàn)段上一動(dòng)點(diǎn),現(xiàn)將沿折起,使點(diǎn)在面內(nèi)的射影在直線(xiàn)上,當(dāng)點(diǎn)從運(yùn)動(dòng)到,則點(diǎn)所形成軌跡的長(zhǎng)度為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題方程表示雙曲線(xiàn);命題不等式的解集是. 為假, 為真,求的取值范圍.
【答案】
【解析】試題分析:由命題方程表示雙曲線(xiàn),求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.
試題解析:
真
,
真 或
∴
真假
假真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)是在軸上的投影, 為上一點(diǎn),且.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)求過(guò)點(diǎn)且斜率為的直線(xiàn)被所截線(xiàn)段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)的機(jī)器上有一種易損元件A,這種元件在使用過(guò)程中發(fā)生損壞時(shí),需要送維修處維修.工廠(chǎng)規(guī)定當(dāng)日損壞的元件A在次日早上 8:30 之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作.每個(gè)工人獨(dú)立維修A元件需要時(shí)間相同.維修處記錄了某月從1日到20日每天維修元件A的個(gè)數(shù),具體數(shù)據(jù)如下表:
日期 | 1 日 | 2 日 | 3 日 | 4 日 | 5 日 | 6 日 | 7 日 | 8 日 | 9 日 | 10 日 |
元件A個(gè)數(shù) | 9 | 15 | 12 | 18 | 12 | 18 | 9 | 9 | 24 | 12 |
日期 | 11 日 | 12 日 | 13 日 | 14 日 | 15 日 | 16 日 | 17 日 | 18 日 | 19 日 | 20 日 |
元件A個(gè)數(shù) | 12 | 24 | 15 | 15 | 15 | 12 | 15 | 15 | 15 | 24 |
從這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個(gè)數(shù).
(Ⅰ)求X的分布列與數(shù)學(xué)期望;
(Ⅱ)若a,b,且b-a=6,求最大值;
(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個(gè)維修工人每天維修元件A的個(gè)數(shù)的數(shù)學(xué)期望不超過(guò)4個(gè),至少需要增加幾名維修工人?(只需寫(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選)已知函數(shù),其中正確結(jié)論的是( )
A.當(dāng)時(shí),函數(shù)有最大值.
B.對(duì)于任意的,函數(shù)一定存在最小值.
C.對(duì)于任意的,函數(shù)是上的增函數(shù).
D.對(duì)于任意的,都有函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,.
(1)若是線(xiàn)段的中點(diǎn),求證:平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),圓:與軸的正半軸的交點(diǎn)是,過(guò)點(diǎn)的直線(xiàn)與圓交于不同的兩點(diǎn).
(1)若直線(xiàn)與軸交于,且,求直線(xiàn)的方程;
(2)設(shè)直線(xiàn),的斜率分別是,,求的值;
(3)設(shè)的中點(diǎn)為,點(diǎn),若,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com