【題目】已知數(shù)列{an}中,a11anan1n2n≥2,nN*.

1)求數(shù)列{an}的通項公式:

2)若對任意的nN*,不等式1≤man≤5恒成立,求實數(shù)m的取值范圍.

【答案】(1)an3n1(2){m|1≤m}

【解析】

1)由已知,根據(jù)遞推公式可得,,……,,所有式子累加可得;

2)在(1)得出的基礎之上解不等式可得實數(shù)的取值范圍.

1)由已知,根據(jù)遞推公式可得anan1n2,an1an2n3,a2a10

由累加法得,當n≥2時,ana10+3×1+…+3×n2,

代入a11得,n≥2時,an11+2×1﹣(n1),

a11也滿足上式,故an3n1.

2)由1≤man≤5,得1≤manm32n1≤5.

因為32n10

所以,

n為奇數(shù)時,32n1[1,3);

n為偶數(shù)時,32n1∈(3,4]

所以32n1最大值為4,最小值為1.

對于任意的正整數(shù)n都有成立,

所以1≤m.

即所求實數(shù)m的取值范圍是{m|1≤m}.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,P為正方體的交點,則在該正方體各個面上的射影可能是()

A. ①②③④B. ①③C. ①④D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的方程,

1)若方程有兩個正根,求:m的取值范圍;

2)若方程有兩個正根,且一個比2大,一個比2小,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生 450 人)中,采用分層抽樣的方法從中抽取名學生進行調查.

(1)已知抽取的名學生中含女生45人,求的值及抽取到的男生人數(shù);

(2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調查結果得到的列聯(lián)表. 請將列聯(lián)表補充完整,并判斷是否有 99%的把握認為選擇科目與性別有關?說明你的理由;

(3)在抽取的選擇“地理”的學生中按分層抽樣再抽取6名,再從這6名學生中抽取2人了解學生對“地理”的選課意向情況,求2人中至少有1名男生的概率.

0.05

0.01

3.841

6.635

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三國時期趙爽在《勾股方圓圖注》中,對勾股定理的證明可用現(xiàn)代數(shù)學表述為如圖所示,我們教材中利用該圖作為幾何解釋的是(

A.如果,那么

B.如果,那么

C.如果,那么

D.對任意實數(shù),有,當且僅當時,等號成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 過點,離心率為.

1求橢圓的方程;

2, 是過點且互相垂直的兩條直線,其中交圓, 兩點, 交橢圓于另一個點,求面積取得最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當時,求的解集;

(Ⅱ)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|<0}.

(1)當a=3時,求A∩B;

(2)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的極坐標方程和曲線的直角坐標方程;

(2)已知點是曲線上一點,點是曲線上一點,的最小值為,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案