【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),設(shè)直線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為普通方程,并指出其曲線是什么曲線;
(2)設(shè)直線與軸的交點為為曲線上一動點,求的最大值.
【答案】(1)曲線的普通方程為:,曲線是以圓心坐標(biāo)為,半徑為的圓;(2)
【解析】
(1)利用,消去參數(shù)得到普通方程,即可。(2)利用,,得到直線的普通方程,即可得到P的坐標(biāo),結(jié)合圓的性質(zhì),即可。
(1)∵曲線的參數(shù)方程為(為整數(shù))
∴由(2)得得(3)
∴(1)式平方+(2)式平方得:
∴曲線的普通方程為:,曲線是以圓心坐標(biāo)為,半徑為的圓;
(2)∵直線的極坐標(biāo)方程為且,,
∴
∴直線的方程為
當(dāng)直線 與軸交點為,
即當(dāng)時,,
∴點坐標(biāo)
∴曲線的圓心到點的距離為,
∵為曲線上一動點,且曲線的半徑為1,
∴的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路汽車的車流量(千輛/h)與汽車的平均速度之間的函數(shù)關(guān)系式為:.
(1)若要求在該段時間內(nèi)車流量超過2千輛,則汽車在平均速度應(yīng)在什么范圍內(nèi)?
(2)在該時段內(nèi),若規(guī)定汽車平均速度不得超過,當(dāng)汽車的平均速度為多少時,車流量最大?最大車流量為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(噸),估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (mR)
(1)當(dāng)時,
①求函數(shù)在x=1處的切線方程;
②求函數(shù)在上的最大,最小值.
(2)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),當(dāng)x>0時,解析式為f(x)=.
(1)求f(x)在R上的解析式;
(2)用定義證明f(x)在(0,+∞)上為減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:an(n∈N*).若正整數(shù)k(k≥5)使得a12+a22+…+ak2=a1a2…ak成立,則k=( )
A.16B.17C.18D.19
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的離心率為2,過點、斜率為1的直線與雙曲線交于、兩點且,.
(1)求雙曲線方程。
(2)設(shè)為雙曲線右支上動點,為雙曲線的右焦點,在軸負半軸上是否存在定點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)當(dāng)時,求在處的切線方程;
(2)當(dāng)時,若對任意的,都存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com