(本小題滿分13分)
設函數
(I)若當時,取得極值,求的值,并討論的單調性;
(II)若存在極值,求的取值范圍,并證明所有極值之和大于.
(I)分別在區(qū)間單調增加,在區(qū)間單調減少.
(II)當時,,當時,,所以無極值.
若,,,也無極值.
的極值之和為
.
【解析】解:(Ⅰ),
依題意有,故.從而.
的定義域為,當時,;
當時,; 當時,.
從而,分別在區(qū)間單調增加,在區(qū)間單調減少.
(Ⅱ)的定義域為,.
方程的判別式.
(。┤,即,在的定義域內,故的極值.
(ⅱ)若,則或.
若,,.
當時,,當時,,所以無極值.
若,,,也無極值.
(ⅲ)若,即或,則有兩個不同的實根,.
當時,,從而有的定義域內沒有零點,故無極值.
當時,,,在的定義域內有兩個不同的零點,由根值判別方法知在取得極值.
綜上,存在極值時,的取值范圍為.
的極值之和為
.
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數.
(1)求函數的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.
(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為的函數是奇函數.
(1)求的值;(2)判斷函數的單調性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數,數列{}的首項.
(1) 求函數的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數列的前項和
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com