設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),l是過(guò)點(diǎn)A與x軸垂直的直線(xiàn),D是直線(xiàn)l與x軸的交點(diǎn),點(diǎn)M在直線(xiàn)l上,且滿(mǎn)足|DM|=m|DA|(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線(xiàn)C.

(Ⅰ)求曲線(xiàn)C的方程,判斷曲線(xiàn)C為何種圓錐曲線(xiàn),并求其焦點(diǎn)坐標(biāo);

(Ⅱ)過(guò)原點(diǎn)且斜率為k的直線(xiàn)交曲線(xiàn)C于P,Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線(xiàn)QN交曲線(xiàn)C于另一點(diǎn)H.是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  解析:(Ⅰ)如圖1,設(shè),,則由

  可得,,所以,.①

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0019/0021/a8084755de2befc4d9eacfcc11a81352/C/Image359.gif" width=14 height=16>點(diǎn)在單位圓上運(yùn)動(dòng),所以.②

  將①式代入②式即得所求曲線(xiàn)的方程為

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0019/0021/a8084755de2befc4d9eacfcc11a81352/C/Image363.gif" width=114 height=20>,所以

  當(dāng)時(shí),曲線(xiàn)是焦點(diǎn)在軸上的橢圓,

  兩焦點(diǎn)坐標(biāo)分別為;

  當(dāng)時(shí),曲線(xiàn)是焦點(diǎn)在軸上的橢圓,

  兩焦點(diǎn)坐標(biāo)分別為

  (Ⅱ)解法1:如圖2、3,,設(shè),,則,,

  直線(xiàn)的方程為,將其代入橢圓的方程并整理可得

  

  依題意可知此方程的兩根為,,于是由韋達(dá)定理可得

  ,即

  因?yàn)辄c(diǎn)H在直線(xiàn)QN上,所以

  于是,

  而等價(jià)于,

  即,又,得,

  故存在,使得在其對(duì)應(yīng)的橢圓上,對(duì)任意的,都有

  解法2:如圖2、3,,設(shè),則,

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0019/0021/a8084755de2befc4d9eacfcc11a81352/C/Image404.gif" width=14 height=16>,兩點(diǎn)在橢圓上,所以兩式相減可得

  .③

  依題意,由點(diǎn)在第一象限可知,點(diǎn)也在第一象限,且,不重合,

  故.于是由③式可得

  .④

  又,三點(diǎn)共線(xiàn),所以,即

  于是由④式可得

  而等價(jià)于,即,又,得,

  故存在,使得在其對(duì)應(yīng)的橢圓上,對(duì)任意的,都有


提示:

本題主要考察求曲線(xiàn)的軌跡方程、直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系,要求能正確理解橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),并能熟練運(yùn)用代數(shù)方法解決幾何問(wèn)題,對(duì)運(yùn)算能力有較高要求.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖北)設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過(guò)點(diǎn)A與x軸垂直的直線(xiàn),D是直線(xiàn)i與x軸的交點(diǎn),點(diǎn)M在直線(xiàn)l上,且滿(mǎn)足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程,判斷曲線(xiàn)C為何種圓錐曲線(xiàn),并求焦點(diǎn)坐標(biāo);
(Ⅱ)過(guò)原點(diǎn)且斜率為k的直線(xiàn)交曲線(xiàn)C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線(xiàn)QN交曲線(xiàn)C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A是單位圓x2+y2=1上任意一點(diǎn),l是過(guò)點(diǎn)A與x軸垂直的直線(xiàn),D是直線(xiàn)l與x軸的交點(diǎn),點(diǎn)M在直線(xiàn)l上,且滿(mǎn)足當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線(xiàn)C。

(1)求曲線(xiàn)C的方程,判斷曲線(xiàn)C為何種圓錐曲線(xiàn),并求其焦點(diǎn)坐標(biāo)。

(2)過(guò)原點(diǎn)斜率為K的直線(xiàn)交曲線(xiàn)C于P,Q兩點(diǎn),其中P在第一象限,且它在y軸上的射影為點(diǎn)N,直線(xiàn)QN交曲線(xiàn)C于另一點(diǎn)H,是否存在m,使得對(duì)任意的K>0,都有PQ⊥PH?若存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考真題 題型:解答題

設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過(guò)點(diǎn)A與x軸垂直的直線(xiàn),D是直線(xiàn)i與x軸的交點(diǎn),點(diǎn)M在直線(xiàn)l上,且滿(mǎn)足|DM|=m|DA|(m>0,且m≠1)。當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線(xiàn)C。
(1)求曲線(xiàn)C的方程,判斷曲線(xiàn)C為何種圓錐曲線(xiàn),并求焦點(diǎn)坐標(biāo);
(2)過(guò)原點(diǎn)且斜率為k的直線(xiàn)交曲線(xiàn)C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線(xiàn)QN交曲線(xiàn)C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省佛山市順德區(qū)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過(guò)點(diǎn)A與x軸垂直的直線(xiàn),D是直線(xiàn)i與x軸的交點(diǎn),點(diǎn)M在直線(xiàn)l上,且滿(mǎn)足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程,判斷曲線(xiàn)C為何種圓錐曲線(xiàn),并求焦點(diǎn)坐標(biāo);
(Ⅱ)過(guò)原點(diǎn)且斜率為k的直線(xiàn)交曲線(xiàn)C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線(xiàn)QN交曲線(xiàn)C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年湖北省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過(guò)點(diǎn)A與x軸垂直的直線(xiàn),D是直線(xiàn)i與x軸的交點(diǎn),點(diǎn)M在直線(xiàn)l上,且滿(mǎn)足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程,判斷曲線(xiàn)C為何種圓錐曲線(xiàn),并求焦點(diǎn)坐標(biāo);
(Ⅱ)過(guò)原點(diǎn)且斜率為k的直線(xiàn)交曲線(xiàn)C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線(xiàn)QN交曲線(xiàn)C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案