【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定
【答案】B
【解析】解答:作AE⊥BD,交BD于E,∵平面ABD⊥平面BCD
∴AE⊥面BCD,BC面BCD
∴AE⊥BC,而DA⊥平面ABC,BC平面ABC
∴DA⊥BC,又∵AE∩AD=A
∴BC⊥面ABD,而AB面ABD
∴BC⊥AB即△ABC為直角三角形
故選B.
分析:作AE⊥BD,交BD于E,根據(jù)平面與平面垂直的性質(zhì)定理可知AE⊥面BCD,再根據(jù)線面垂直的判定定理可知BC⊥面ABD,從而得到△ABC為直角三角形.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線與平面垂直的性質(zhì)(垂直于同一個(gè)平面的兩條直線平行),還要掌握平面與平面垂直的性質(zhì)(兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(4)與f(8)的值;
(2)解不等式f(x)﹣f(x﹣2)>3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 、 、 是兩兩不等的實(shí)數(shù),點(diǎn) , ,點(diǎn) , ,則直線 的傾斜角為( )
A.30°
B.45°
C.60°
D.135°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面半徑和高均為4的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),若過(guò)直徑CD與點(diǎn)E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)P的距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)對(duì)甲、乙兩種品牌的商品進(jìn)行為期100天的營(yíng)銷(xiāo)活動(dòng),為調(diào)查者100天的日銷(xiāo)售情況,隨機(jī)抽取了10天的日銷(xiāo)售量(單位:件)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖,若日銷(xiāo)量不低于50件,則稱當(dāng)日為“暢銷(xiāo)日”.
(1)現(xiàn)從甲品牌日銷(xiāo)量大于40且小于60的樣本中任取兩天,求這兩天都是“暢銷(xiāo)日”的概率;
(2)用抽取的樣本估計(jì)這100天的銷(xiāo)售情況,請(qǐng)完成這兩種品牌100天銷(xiāo)量的列聯(lián)表,并判斷是否有的把握認(rèn)為品牌與“暢銷(xiāo)日”天數(shù)有關(guān).
附: (其中)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
暢銷(xiāo)日天數(shù) | 非暢銷(xiāo)日天數(shù) | 合計(jì) | |
甲品牌 | |||
乙品牌 | |||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】EC垂直Rt△ABC的兩條直角邊,D是斜邊AB的中點(diǎn),AC=6,BC=8,EC=12,則DE的長(zhǎng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的右焦點(diǎn),過(guò)點(diǎn)且與坐標(biāo)軸不垂直的直線與橢圓交于,兩點(diǎn),當(dāng)直線經(jīng)過(guò)橢圓的一個(gè)頂點(diǎn)時(shí)其傾斜角恰好為.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),線段上是否存在點(diǎn),使得?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某幾何體的三視圖的形狀、大小如圖所示.
(1)求該幾何體的體積;
(2)設(shè)點(diǎn)D、E分別在線段AC、BC上,且DE∥平面ABB1A1 , 求證:DE∥A1B1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校對(duì)高三年級(jí)的學(xué)生進(jìn)行體檢,現(xiàn)將高三男生的體重(單位:㎏)數(shù)據(jù)進(jìn)行整理后分成五組,并繪制頻率分布直方圖(如圖所示).根據(jù)一般標(biāo)準(zhǔn),高三男生的體重超過(guò)65㎏屬于偏胖,低于55㎏屬于偏瘦,已知圖中從左到右第一、第三、第四、第五小組的頻率分別為0.25、0.20、0.10、0.05,第二小組的頻率數(shù)為400,則該校高三年級(jí)的男生總數(shù)和體重正常的頻率分別為( )
A.1000,0.50
B.800,0.50
C.1000,0.60
D.800,0.60
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com