【題目】某校有17名學(xué)生參加某大學(xué)組織的夏令營(yíng)活動(dòng),每人至少參加地學(xué)、考古、信息科學(xué)三科夏令營(yíng)活動(dòng)中的一科,已知其中參加地學(xué)夏令營(yíng)活動(dòng)的有11人,參加考古夏令營(yíng)活動(dòng)的有7人,參加信息科學(xué)夏令營(yíng)活動(dòng)的有9人,同時(shí)參加地學(xué)和考古夏令營(yíng)活動(dòng)的有4人,同時(shí)參加地學(xué)和信息科學(xué)夏令營(yíng)活動(dòng)的有5人,同時(shí)參加考古和信息科學(xué)夏令營(yíng)活動(dòng)的有3人,則三科夏令營(yíng)活動(dòng)都參加的人數(shù)是_______.

【答案】2

【解析】

設(shè)出參加三科競(jìng)賽的學(xué)生分別組成三個(gè)集合A,B,C,三科夏令營(yíng)活動(dòng)都參加的人數(shù)為,再根據(jù)三個(gè)集合兩兩之間的交集的元素的個(gè)數(shù)分別是5,4,3,列出方程,求解即可.

設(shè)參加地學(xué)的學(xué)生組成集合A,參加考古的組成集合B,參加信息科學(xué)的組成集合C
Venn,設(shè)三科夏令營(yíng)活動(dòng)都參加的人數(shù)為.

由題意可列方程,解得.

故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:直線平面直線平行四邊形,四棱錐的頂點(diǎn)在平面上, ,, ,、分別是的中點(diǎn)

(Ⅰ)求證:平面 ;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1;

(2)若函數(shù)f(x)R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x3對(duì)任意xR恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù),點(diǎn)分別是的圖象與軸、軸的交點(diǎn),分別是的圖象上橫坐標(biāo)為、的兩點(diǎn),軸,且、三點(diǎn)共線.

1)求函數(shù)的解析式;

2)若,,求

3)若關(guān)于的函數(shù)在區(qū)間上恰好有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(Ax軸上方),問在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)是函數(shù)的反函數(shù).

求函數(shù)的解析式,并寫出定義域;

設(shè),判斷并證明函數(shù)在區(qū)間上的單調(diào)性:

中的函數(shù)在區(qū)間內(nèi)的圖像是不間斷的光滑曲線,求證:函數(shù)在區(qū)間內(nèi)必有唯一的零點(diǎn)(假設(shè)為),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)滿足對(duì)于任意實(shí)數(shù)都有,且當(dāng)時(shí),

1)判斷的奇偶性并證明;

2)判斷的單調(diào)性,并求當(dāng)時(shí),的最大值及最小值;

3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018安徽江南十校高三3月聯(lián)考線段為圓 的一條直徑,其端點(diǎn), 在拋物線 上,且 兩點(diǎn)到拋物線焦點(diǎn)的距離之和為

I)求直徑所在的直線方程;

II)過點(diǎn)的直線交拋物線 兩點(diǎn),拋物線, 處的切線相交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】全國(guó)糖酒商品交易會(huì)將在四川舉辦.展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會(huì)前查閱了最近5次交易會(huì)的參會(huì)人數(shù)(萬(wàn)人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):

舉辦次數(shù)

第一次

第二次

第三次

第四次

第五次

參會(huì)人數(shù)(萬(wàn)人)

11

9

8

10

12

原材料(袋)

28

23

20

25

29

(Ⅰ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會(huì)大約有13萬(wàn)人參加,為了保證原材料能夠滿足需要,則該店應(yīng)至少再補(bǔ)充原材料多少袋?

(參考公式:,

查看答案和解析>>

同步練習(xí)冊(cè)答案