已知圓,過點作直線交圓C于兩點,面積的最大值為__________.
解析試題分析:根據(jù)題意可設(shè)出過點M(1,3)的直線l方程,利用點到直線的距離公式求得圓心(4,0)到l的距離,用弦心距、半弦長、半徑組成的直角三角形進行計算轉(zhuǎn)化,從而可得到△ABC面積的表達式,可求得其最大值. 設(shè)過點M(1,3)的直線方程為l:y-3=k(x-1),由x2-8x+y2-9=0得圓心C(4,0),半徑r=5,設(shè)圓心C(4,0)到直線l的距離為d,點C在l上的射影為M,則d=,ABC,然后根據(jù)均值不等式得到了三角形面積的 為
考點:直線方程與圓的方程的應(yīng)用
點評:本題考查直線方程與圓的方程的應(yīng)用,解決的方法利用弦心距、半弦長、半徑組成的直角三角形進行計算,難點在于復(fù)雜的運算與化歸,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
以點C (t, )(t∈R , t ≠ 0)為圓心的圓過原點O,直線y = -2x-4與圓C交于點M, N, 若,則圓C的方程 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com