【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,.
(Ⅰ)過作截面與線段交于點(diǎn),使得平面,試確定點(diǎn)的位置,并予以證明;
(Ⅱ)在(Ⅰ)的條件下,求直線與平面所成角的正弦值.
【答案】(Ⅰ)為線段的中點(diǎn),證明見解析(Ⅱ)
【解析】
(Ⅰ)取中點(diǎn),連結(jié),,可得,,,且.可得,從而面,即面面.
(Ⅱ)連結(jié)交于,則為的中點(diǎn),連結(jié),當(dāng)面時(shí),,所以是中點(diǎn).由(1)知,,兩兩垂直,分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,利用向量求解.
解:(Ⅰ)取中點(diǎn),連結(jié),,
是邊長為2的正三角形,,,
又,,且.
于是,從而.
面,面,
所以面,而面,所以面面.
(Ⅱ)連結(jié)交于,則為的中點(diǎn),連結(jié),當(dāng)面時(shí),,所以是中點(diǎn).
由(Ⅰ)知,,兩兩垂直,分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,則,, , ,,
,.
設(shè)面的法向量為,由,取.
面的法向量是,
,,
.
二面角是鈍角,二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,2),動(dòng)點(diǎn)M到點(diǎn)A的距離比動(dòng)點(diǎn)M到直線y=﹣1的距離大1,動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)Q為直線y=﹣1上的動(dòng)點(diǎn),過Q做曲線C的切線,切點(diǎn)分別為D、E,求△QDE的面積S的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長交橢圓于點(diǎn),的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)科大學(xué)實(shí)習(xí)小組為研究實(shí)習(xí)地晝夜溫差與患感冒人數(shù)之間的關(guān)系,分別到當(dāng)?shù)貧庀蟛块T和某醫(yī)院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日期 | 1月5日 | 1月20日 | 2月5日 | 2月20日 | 3月5日 | 3月20日 |
晝夜溫差() | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(人) | 22 | 25 | 29 | 26 | 16 | 12 |
該小組確定的研究方案是:先從這六組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù)求線性回歸方程,再用剩余的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求剩余的2組數(shù)據(jù)都是20日的概率;
(2)若選取的是1月20日,2月5日,2月20日,3月5日四組數(shù)據(jù).
①請(qǐng)根據(jù)這四組數(shù)據(jù),求出關(guān)于的線性回歸方程(,用分?jǐn)?shù)表示);
②若某日的晝夜溫差為,預(yù)測(cè)當(dāng)日就診人數(shù)約為多少人?
附參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),g(x)=b(x﹣1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)﹣g(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)的曲線與函數(shù)g(x)的曲線有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從2011年到2018年參加“北約”,“華約”考試而獲得加分的學(xué)生(每位學(xué)生只能參加“北約”,“華約”一種考試)人數(shù)可以通過以下表格反映出來.(為了方便計(jì)算,將2011年編號(hào)為1,2012年編號(hào)為2,依此類推……)
年份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
人數(shù)y | 2 | 3 | 4 | 4 | 7 | 7 | 6 | 6 |
(1)據(jù)悉,該校2018年獲得加分的6位同學(xué)中,有1位獲得加20分,2位獲得加15分,3位獲得加10分,從該6位同學(xué)中任取兩位,記該兩位同學(xué)獲得的加分之和為X,求X的分布列及期望.
(2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出y與x之間的線性回歸方程,并用以預(yù)測(cè)該校2019年參加“北約”,“華約”考試而獲得加分的學(xué)生人數(shù).(結(jié)果要求四舍五入至個(gè)位)
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù).
(1)求證:當(dāng)時(shí),;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中.若對(duì)一切恒成立,則①;②;③既不是奇函數(shù)也不是偶函數(shù);④的單調(diào)遞增區(qū)間是;⑤存在經(jīng)過點(diǎn)的直線與函數(shù)的圖像不相交.以上結(jié)論正確的是________________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,M為AD中點(diǎn),PA=PD,AD=AB=2CD=2.
(1)求證:平面PMB⊥平面PAC;
(2)求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com