已知拋物線與橢圓有公共焦點(diǎn),且橢圓過點(diǎn).
(1)求橢圓方程;
(2)點(diǎn)、是橢圓的上下頂點(diǎn),點(diǎn)為右頂點(diǎn),記過點(diǎn)、的圓為⊙,過點(diǎn)作⊙ 的切線,求直線的方程;
(3)過橢圓的上頂點(diǎn)作互相垂直的兩條直線分別交橢圓于另外一點(diǎn)、,試問直線是否經(jīng)過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.

(1);(2);(3)

解析試題分析:(1)由題目給出的條件直接求解的值,則可求出橢圓方程;(2)當(dāng)所求直線斜率不存在時(shí),其方程為,符合題意;當(dāng)直線斜率存在時(shí),可設(shè)其斜率為,寫出直線的點(diǎn)斜式方程,因?yàn)橹本與圓相切,所以根據(jù)圓心到直線的距離等于圓的半徑可直接求得直線的斜率,從而得到方程;(3)由題意可知,兩直線的斜率都存在,設(shè)AP:,代入橢圓的方程從而求出點(diǎn)的坐標(biāo),同理再求出點(diǎn)的坐標(biāo),從而可求出直線的方程,由方程可知當(dāng)時(shí),恒成立,所以直線恒過定點(diǎn)
試題解析:
(1),則c=2, 又,得
∴所求橢圓方程為 .
(2)M,⊙M:,直線l斜率不存在時(shí),
直線l斜率存在時(shí),設(shè)為,
,解得,
∴直線l為 .
(3)顯然,兩直線斜率存在, 設(shè)AP:
代入橢圓方程,得,解得點(diǎn),
同理得,直線PQ:
令x=0,得,∴直線PQ過定點(diǎn)
考點(diǎn):本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的簡單幾何性質(zhì),考查了直線和圓錐曲線的關(guān)系,突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)如圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個(gè)橢圓。

(1)若最大拱高h(yuǎn)為6 m,則隧道設(shè)計(jì)的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應(yīng)如何設(shè)計(jì)拱高h(yuǎn)和拱寬?(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高。)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個(gè)點(diǎn)M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點(diǎn)為支點(diǎn),用合金鋼板把隧道拱線部分連接封閉,形成一個(gè)梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價(jià)是梯形頂部單位面積鋼板造價(jià)的倍,試確定M、N的位置以及的值,使總造價(jià)最少。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點(diǎn),離心率,右焦點(diǎn)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的上頂點(diǎn)為,在橢圓上是否存在點(diǎn),使得向量共線?若存在,求直線的方程;若不存在,簡要說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點(diǎn)為,,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過的直線與橢圓交于、兩點(diǎn),問在橢圓上是否存在一點(diǎn),使四邊形為平行四邊形,若存在,求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn),且離心率。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為D,且滿足,試判斷直線是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,為坐標(biāo)原點(diǎn),動直線
拋物線交于不同兩點(diǎn)
(1)求證:·為常數(shù);
(2)求滿足的點(diǎn)的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于時(shí),求k的值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

曲線在矩陣的變換作用下得到曲線
(Ⅰ)求矩陣;
(Ⅱ)求矩陣的特征值及對應(yīng)的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在s軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P為橢圓C上的動點(diǎn),M為過P且垂直于x軸的直線上的點(diǎn),=λ,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

同步練習(xí)冊答案