【題目】已知在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn),曲線: (為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同單位長度的極坐標(biāo)系,直線: .
(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)曲線上恰好存在三個不同的點(diǎn)到直線的距離相等,分別求出這三個點(diǎn)的極坐標(biāo).
【答案】(I), ;(II): 、.
【解析】試題分析:(1)平方相加消去參數(shù),即可得到曲線的普通方程,利用兩角和的正弦公式極坐標(biāo)與直角坐標(biāo)互化求出直線的直角坐標(biāo)方程;(2)求出圓的圓心與半徑,求出三個點(diǎn)的直角坐標(biāo),然后利用互化公式可求解這三點(diǎn)的極坐標(biāo).
試題解析:(Ⅰ)曲線,
可得:
曲線的普通方程: .
直線: .
直線的直角坐標(biāo)方程: .
(Ⅱ)∵圓的圓心半徑為2,圓心到直線的距離為1,
∴這三個點(diǎn)在平行直線與上,如圖:直線與與的距離為1.
: , : .
可得
兩個交點(diǎn);
解得,
這三個點(diǎn)的極坐標(biāo)分別為: 、.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸端點(diǎn)到右焦點(diǎn)的距離為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)的直線交橢圓于兩點(diǎn),交直線于點(diǎn),若, ,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從3名骨科、4名腦外科和5名內(nèi)科醫(yī)生中選派5人組成一個抗震救災(zāi)醫(yī)療小組,則骨科、腦外科和內(nèi)科醫(yī)生都至少有1人的選派方法種數(shù)是(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當(dāng)x≤0時,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達(dá)式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣1(a>0,且a≠1),當(dāng)x∈(0,+∞)時,f(x)>0,且函數(shù)g(x)=f(x+1)﹣4的圖象不過第二象限,則a的取值范圍是( )
A.(1,+∞)
B.
C.(1,3]
D.(1,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a2=3,S5=25.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 是否存在k∈N* , 使得等式2﹣2Tk= 成立,若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+|x﹣5|.
(1)當(dāng)a=1時,求f(x)的最小值;
(2)如果對任意的實(shí)數(shù)x,都有f(x)≥1成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,三角形VAB為等邊三角形,AC⊥BC且 AC=BC= ,O、M分別為AB和VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求直線MC與平面VAB所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個口袋中裝有個紅球且和個白球,一次摸獎從中摸兩個球,兩個球顏色不同則為中獎.
(1)用表示一次摸獎中獎的概率;
(2)若,設(shè)三次摸獎(每次摸獎后球放回)恰好有次中獎,求的數(shù)學(xué)期望;
(3)設(shè)三次摸獎(每次摸獎后球放回)恰好有一次中獎的概率,當(dāng)取何值時, 最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com