【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系x0y中,動(dòng)點(diǎn)A的坐標(biāo)為(2﹣3sinα,3cosα﹣2),其中α∈R.在極坐標(biāo)系(以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線C的方程為ρcos(θ﹣ )=a.
(1)判斷動(dòng)點(diǎn)A的軌跡的形狀;
(2)若直線C與動(dòng)點(diǎn)A的軌跡有且僅有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

【答案】
(1)解:設(shè)動(dòng)點(diǎn)A的直角坐標(biāo)為(x,y),則 ,利用同角三角函數(shù)的基本關(guān)系消去參數(shù)α可得,

(x﹣2)2+(y+2)2=9,點(diǎn)A的軌跡為半徑等于3的圓.


(2)解:把直線C方程為ρcos(θ﹣ )=a化為直角坐標(biāo)方程為 + =2a,

由題意可得直線C與圓相切,故有 =3,解得 a=3 或a=﹣3.


【解析】(1)設(shè)動(dòng)點(diǎn)A的直角坐標(biāo)為(x,y),則 ,利用同角三角函數(shù)的基本關(guān)系消去參數(shù)α可得直角坐標(biāo)方程,從而得到點(diǎn)A的軌跡.(2)把直線C方程為直角坐標(biāo)方程,由題意可得直線C與圓相切,故有圓心到直線的距離等于半徑,由此解得 a 的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓的參數(shù)方程的相關(guān)知識(shí),掌握?qǐng)A的參數(shù)方程可表示為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2x,g(x)是一次函數(shù),并且點(diǎn)(2,2)在函數(shù)f[(g(x)]的圖象上,點(diǎn)(2,5)在函數(shù)g[f(x)]的圖象上,則g(x)的解析式為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C1 (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ.
(1)求C2與C3交點(diǎn)的直角坐標(biāo);
(2)若C2與C1相交于點(diǎn)A,C3與C1相交于點(diǎn)B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知c=6,sinA﹣sinC=sin(A﹣B).若1≤a≤6,則sinC的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的奇函數(shù),且對(duì)任意,當(dāng)時(shí),都有

(1),試比較的大小關(guān)系;

(2)對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品的保鮮時(shí)間t(單位:小時(shí))與儲(chǔ)藏溫度x(單位:)滿足函數(shù)關(guān)系且該食品在4的保鮮時(shí)間是16小時(shí).

已知甲在某日上午10時(shí)購買了該食品,并將其遺放在室外,且此日的室外溫度隨時(shí)間變化如圖所示.給出以下四個(gè)結(jié)論:

該食品在6的保鮮時(shí)間是8小時(shí);

當(dāng)x[6,6]時(shí),該食品的保鮮時(shí)間t隨著x增大而逐漸減少;

到了此日13時(shí),甲所購買的食品還在保鮮時(shí)間內(nèi);

到了此日14時(shí),甲所購買的食品已然過了保鮮時(shí)間.

其中,所有正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|)。

(1)求實(shí)數(shù)a,b的值;

(2)若不等式f(2k)>1成立,求實(shí)數(shù)k的取值范圍;

(3)定義在[p,q]上的函數(shù)(x),設(shè)p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l將區(qū)間[p,q]任意劃分成n個(gè)小區(qū)間,如果存在一個(gè)常數(shù)M>0,使得和式恒成立,則稱函數(shù)(x)為在[p,q]上的有界變差函數(shù)。試判斷函數(shù)f(x)是否為在[0,4]上的有界變差函數(shù)?若是,求M的最小值;若不是,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為F(2,0),M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且△MOF是等腰直角三角形.
(1)求橢圓的方程;
(2)過點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1 , k2 , 且k1+k2=8,證明:直線AB過定點(diǎn)( ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為矩形,平面 // ,, ,點(diǎn)點(diǎn)P在棱上.

(1)求證: ;

(2)若的中點(diǎn),求異面直線所成角的余弦值;

(3)是否存在正實(shí)數(shù),使得,且滿足二面角的余弦值為,若存在,求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案