【題目】在平面直角坐標(biāo)系中,動點分別與兩個定點,的連線的斜率之積為.
(1)求動點的軌跡的方程;
(2)設(shè)過點的直線與軌跡交于,兩點,判斷直線與以線段為直徑的圓的位置關(guān)系,并說明理由.
【答案】(1) ; (2)相離.
【解析】
(1)根據(jù)直接法求軌跡方程,(2)先用坐標(biāo)表示以線段為直徑的圓方程,再根據(jù)圓心到直線距離與半徑大小進(jìn)行判斷.
(1)設(shè)動點的坐標(biāo)為,
因為 , ,
所以,整理得.
所以動點的軌跡的方程 .
(2)過點的直線為軸時,顯然不合題意.
所以可設(shè)過點的直線方程為,
設(shè)直線與軌跡的交點坐標(biāo)為 ,,
由得.
因為,
由韋達(dá)定理得 =, =.
注意到 =.
所以的中點坐標(biāo)為.
因為 .
點到直線的距離為.
因為 ,即 ,
所以直線與以線段為直徑的圓相離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)設(shè)函數(shù)在處的切線方程為,若函數(shù)是上的單調(diào)增函數(shù),求的值;
(3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率為且四個頂點構(gòu)成面積為的菱形.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點且斜率不為0的直線與橢圓交于,兩點,記中點為,坐標(biāo)原點為,直線交橢圓于,兩點,當(dāng)四邊形的面積為時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】6月12日,上海市發(fā)布了《上海市生活垃圾分類投放指南》,將人們生活中產(chǎn)生的大部分垃圾分為七大類.某幢樓前有四個垃圾桶,分別標(biāo)有“可回收物”、“有害垃圾”、“濕垃圾”、“干垃圾”,小明同學(xué)要將雞骨頭(濕垃圾)、貝殼(干垃圾)、指甲油(有害垃圾)、報紙(可回收物)全部投入到這四個桶中,若每種垃圾投放到每個桶中都是等可能的,那么隨機(jī)事件“4種垃圾中至少有2種投入正確的桶中”的概率是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以橢圓的焦點和短軸端點為頂點的四邊形恰好是面積為4的正方形.
(1)求橢圓的方程:
(2)若是橢圓上的動點,求的取值范圍;
(3)直線:與橢圓交于異于橢圓頂點的,兩點,為坐標(biāo)原點,直線與橢圓的另一個交點為點,直線和直線的斜率之積為1,直線與軸交于點.若直線,的斜率分別為,試判斷,是否為定值,若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)選派7名隊員代表本區(qū)參加全市青少年圍棋錦標(biāo)賽,其中3名來自A學(xué)校且1名為女棋手,另外4名來自B學(xué)校且2名為女棋手從這7名隊員中隨機(jī)選派4名隊員參加第一階段的比賽
求在參加第一階段比賽的隊員中,恰有1名女棋手的概率;
Ⅱ設(shè)X為選出的4名隊員中A、B兩校人數(shù)之差的絕對值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)M(x,y)為上任意一點,求的最小值,并求相應(yīng)的點M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上所有點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的,得到曲線,在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程及直線的直角坐標(biāo)方程;
(2)設(shè)點為曲線:上的任意一點,求點到直線的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com