已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a,其中a、b都是大于1的正整數(shù),且。

①求a的值;

②對(duì)于任意的,總存在,使得成立,求b;

③令,問數(shù)列中是否存在連續(xù)三項(xiàng)成等比數(shù)列,若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng),若不存在,請說明理由。(14分)

 

【答案】

③這三項(xiàng)依次是18,30,50

【解析】解:(1)由已知得:,由, ,∵a,b都是大于1的正整數(shù),∴,,又,∴,∴,∴,∴   (5分)

(2),∴,∴,∴5一定是b的倍數(shù),∵,∴   (8分)

(3)設(shè)數(shù)列中,成等比數(shù)列,由

化簡得: (*)   (10分)

當(dāng)n=1時(shí),由(*)式得 b=1,與題意矛盾,當(dāng)n=2時(shí),由(*)式得 b=4,

成等比數(shù)列,,∴

當(dāng),這與矛盾    (13分)

綜上所述,當(dāng)時(shí),不存在連續(xù)三項(xiàng)成等比數(shù)列,當(dāng)時(shí),數(shù)列中的第二、三、四項(xiàng)成等比數(shù)列,這三項(xiàng)依次是18,30,50   (14分)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年濰坊市二模)(14分)已知等差數(shù)列的首項(xiàng)為a,公差為b;等比數(shù)列的首項(xiàng)為b,公比為a,其中a,,且

 。1)求a的值;

  (2)若對(duì)于任意,總存在,使,求b的值;

 。3)在(2)中,記是所有中滿足, 的項(xiàng)從小到大依次組成的數(shù)列,又記的前n項(xiàng)和,的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列的首項(xiàng)為a,公差為b;等比數(shù)列的首項(xiàng)為b,公比為a,其中a,,且

 。1)求a的值;

 。2)若對(duì)于任意,總存在,使,求b的值;

 。3)在(2)中,記是所有中滿足, 的項(xiàng)從小到大依次組成的數(shù)列,又記的前n項(xiàng)和,的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西南昌10所省高三第二次模擬突破沖刺文科數(shù)學(xué)(二)(解析版) 題型:填空題

已知等差數(shù)列的首項(xiàng)為,公差為,其前項(xiàng)和為,若直線與圓的兩個(gè)交點(diǎn)關(guān)于直線對(duì)稱,則=          

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一下學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a,其中a,b均為正整數(shù),若。

(1)求的通項(xiàng)公式;

(2)若成等比數(shù)列,求數(shù)列的通項(xiàng)公式。

(3)設(shè)的前n項(xiàng)和為,求當(dāng)最大時(shí),n的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省山實(shí)驗(yàn)高高三期考試文科數(shù)學(xué)卷 題型:填空題

已知等差數(shù)列的首項(xiàng)為24,公差為,則當(dāng)n=        時(shí),該數(shù)列的前n項(xiàng)

取得最大值.

 

查看答案和解析>>

同步練習(xí)冊答案