已知奇函數(shù)f(x)=

(1)求實數(shù)m的值,并在給出的直角坐標(biāo)系中畫出y=f(x)的圖象;

(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,試確定a的取值范圍.

 

【答案】

 

解:(1)當(dāng)x<0時,-x>0,f(x)=-(x)2+2(-x)=-x2-2x,

又f(x)為奇函數(shù),f(x)=-f(-x)=x2+2x,

所以m=2.                                      …………………3分

f(x)的圖象略.                                      …………………6分

(2)由(1)知f(x)=,

由圖象可知,f(x)在[-1,1]上單調(diào)遞增,               …………………8分

要使f(x)在[-1,a-2]上單調(diào)遞增,只需        …………………10分

解之                     …………………12分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
-x2+2x(x>0)
0,(x=0)
x2+mx(x<0)

(1)求實數(shù)m的值,并在給出的直角坐標(biāo)系中畫出y=f(x)的圖象.
(2)若函數(shù)f(x)在區(qū)間[-1,|a|-2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
ax+b
x2+1
在(-1,1)上是增函數(shù),且f(
1
2
)=
2
5

①確定函數(shù)f(x)的解析式.
②解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
x2-2x+2  (x<0)
ax2+bx+c (x>0)
(a,b,c∈R)
,則a+b+c的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
-x2+2x   (x>0)
0
                (x=0)
x2+mx
     (x<0)
,則m=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•杭州二模)已知奇函數(shù)f(x)=
qx+r
px2+1
有最大值
1
2
,且f(1)>
2
5
,其中實數(shù)x>0,p、q是正整數(shù)..
(1)求f(x)的解析式;
(2)令an=
1
f(n)
,證明an+1>an(n是正整數(shù)).

查看答案和解析>>

同步練習(xí)冊答案