[2014·泰安模擬]曲線=1(m<6)與曲線=1(5<n<9)的(  )
A.焦距相等B.離心率相等
C.焦點(diǎn)相同D.準(zhǔn)線相同
A
∵m<6,∴10-m>6-m>0.
∴曲線=1表示焦點(diǎn)在x軸上的橢圓,
其焦距為2=4.
∵5<n<9,∴5-n<0,9-n>0.
∴曲線=1,即=1.
表示焦點(diǎn)在y軸上的雙曲線,
其焦距為2=4,故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,兩焦點(diǎn)F1,F(xiàn)2之間的距離為2,橢圓上第一象限內(nèi)的點(diǎn)P滿足PF1⊥PF2,且△PF1F2的面積為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C的右頂點(diǎn)為A,直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N,且滿足AM⊥AN.求證:直線l過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為,上頂點(diǎn)為B,拋物線分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,相交于直線上一點(diǎn)P.
(1)求橢圓C及拋物線的方程;
(2)若動直線與直線OP垂直,且與橢圓C交于不同的兩點(diǎn)M,N,已知點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長等于的長半軸長。

(1)求,的方程;
(2)設(shè)軸的交點(diǎn)為M,過坐標(biāo)原點(diǎn)O的直線相交于點(diǎn)A,B,直線MA,MB分別與相交與D,E.
①證明:;
②記△MAB,△MDE的面積分別是.問:是否存在直線,使得=?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是橢圓的左右焦點(diǎn),上一點(diǎn)且軸垂直,直線的另一個交點(diǎn)為
(1)若直線的斜率為,求的離心率;
(2)若直線軸上的截距為,且,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的一個焦點(diǎn)在拋物線的準(zhǔn)線上,則該橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是平面兩定點(diǎn),點(diǎn)滿足,則點(diǎn)的軌跡方程是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),兩個焦點(diǎn)為,.
(1)求橢圓的方程;
(2),是橢圓上的兩個動點(diǎn),如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C過點(diǎn),兩焦點(diǎn)為、是坐標(biāo)原點(diǎn),不經(jīng)過原點(diǎn)的直線與該橢圓交于兩個不同點(diǎn)、,且直線、、的斜率依次成等比數(shù)列.
(1)求橢圓C的方程;       
(2)求直線的斜率;
(3)求面積的范圍.

查看答案和解析>>

同步練習(xí)冊答案