曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡.給出下列三個(gè)結(jié)論:
①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
③若點(diǎn)P在曲線C上,則△F1PF2的面積不大于a2
其中,所有正確結(jié)論的序號(hào)是   
【答案】分析:由題意曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1),利用直接法,設(shè)動(dòng)點(diǎn)坐標(biāo)為(x,y),及可得到動(dòng)點(diǎn)的軌跡方程,然后由方程特點(diǎn)即可加以判斷.
解答:解:對(duì)于①,由題意設(shè)動(dòng)點(diǎn)坐標(biāo)為(x,y),則利用題意及兩點(diǎn)間的距離公式的得:?[(x+1)2+y2]•[(x-1)2+y2]=a4(1)將原點(diǎn)代入驗(yàn)證,此方程不過原點(diǎn),所以①錯(cuò);
對(duì)于②,把方程中的x被-x代換,y被-y 代換,方程不變,故此曲線關(guān)于原點(diǎn)對(duì)稱.②正確;
對(duì)于③,由題意知點(diǎn)P在曲線C上,則△F1PF2的面積
由(1)式平方化簡(jiǎn)的:y4+[(x+1)2+(x-1)2]y2+(x2-1)2-a4=0⇒(舍)  
把三角形的面積式子平方得: 對(duì)于(2)
 令
代入(2)得=,
故可知a2 所以③正確.
故答案為:②③
點(diǎn)評(píng):此題重點(diǎn)考查了利用直接法求出動(dòng)點(diǎn)的軌跡方程,并化簡(jiǎn),利用方程判斷曲線的對(duì)稱性及利用解析式選擇換元法求出值域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡.給出下列三個(gè)結(jié)論:
①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
③若點(diǎn)P在曲線C上,則△F1PF2的面積不大于
12
a2
其中,所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡,給出下列三個(gè)結(jié)論:
①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
③若點(diǎn)P在曲線C上,
則V F1PF2的面積不大于
1
2
a2正確的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-2,0)和F2(2,0)的斜率之積為
1
2
的點(diǎn)的軌跡,P為曲線C上的點(diǎn).給出下列四個(gè)結(jié)論:
①直線y=k(x+2)與曲線C一定有交點(diǎn);
②曲線C關(guān)于原點(diǎn)對(duì)稱;
③|PF1|-|PF2|為定值;
④△PF1F2的面積最大值為2
2
.其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省雅安中學(xué)高二(下)4月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡.給出下列三個(gè)結(jié)論:
①曲線C過坐標(biāo)原點(diǎn);
②曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
③若點(diǎn)P在曲線C上,則△F1PF2的面積不大于a2
其中,所有正確結(jié)論的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案